
A Beginner’s Guide to FreeBasic

Richard D. Clark
Ebben Feagan

A Clark Productions / HMCsoft Book

 Copyright (c) Ebben Feagan and Richard Clark.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

The source code was compiled under version .17b of the FreeBasic compiler and tested
under Windows 2000 Professional and Ubuntu Linux 6.06. Later compiler versions may
require changes to the source code to compile successfully and results may differ under
different operating systems. All source code is released under version 2 of the Gnu Public
License (http://www.gnu.org/copyleft/gpl.html). The source code is provided AS IS,
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.

Microsoft Windows®, Visual Basic® and QuickBasic® are registered trademarks and are
copyright © Microsoft Corporation. Ubuntu is a registered trademark of Canonical
Limited.

2

To all the members of the FreeBasic community, especially the developers.

 3

Acknowledgments

Writing a book is difficult business, especially a book on programming. It is
impossible to know how to do everything in a particular language, and everyone learns
something from the programming community. I have learned a multitude of things from
the FreeBasic community and I want to send my thanks to all of those who have taken
the time to post answers and examples to questions.

I would also like to say a big thanks to the developers of FreeBasic. Without your
continual hard work in development, we wouldn’t have what I consider the premier Open
Source BASIC language for today.

The PDF version of this book was created Using Open Office 2.0.2,
http://www.openoffice.org/.

4

About the Book

FBeginner is a concise, hands-on beginner’s guide to FreeBasic and is aimed at the
novice programmer. The book assumes no prior programming knowledge. The goal of the
book is to create a solid foundation in the basics of programming in FreeBasic that the
programmer can build and expand upon.

FreeBasic is a cross-platform compiler, however this book concentrates on using
FreeBasic under the 32-bit Microsoft Windows™ and GNU/Linux operating systems.
However, other than the installation and setup portions of this book, most of the code
should run under any of the supported platforms.

All of the source code presented in this book is original code, and can be
downloaded from the Clark Productions website located at http://rdc.ascii-world.com/ or
http://freebasic.hmcsoft.org/.

 5

Conventions Used in the Book

The various styles used in the book along with their meaning, are listed below. The
basic paragraph format is the font you see here with each paragraph indented.

Information that is supplemental to the topic being discussed will be presented in
the format below.

These colored boxes have additional, supplemental or historical information associated
with the current topic being discussed.

Source code is listed in a fixed font with borders to delimit the code segment. You
should always type in the programs. Most are small and can be entered into the editor in
just a couple of minutes. The physical act of typing in the programs will help you learn
the vocabulary and structure of FreeBasic. You do not type in the line numbers; they are
only for referencing the code in the text. The file name for the program is located after
the code segment.

1

2

3

4

5

Option Explicit

Cls

Print "Hello World From FreeBasic!"

Sleep

End

Listing 1: helloworld.bas

Following each listing is an analysis paragraph which explains how the program
works. It is marked by the word Analysis: in bold with a fixed font. Even though many of
the keywords you will see may have not be discussed in detail in the text, seeing these
keywords in action will help you become familiar with the vocabulary of FreeBasic.

Analysis: This will mark the beginning of an analysis section. The code will be
discussed using the line numbers referenced in the listing. You do not type the numbers
in the editor.

The output of a program is listed in a fixed font and enclosed in a gray box as
shown below. This output is given so you can compare the results to see if you have
entered the program correctly.

Hello World from FreeBasic!

Output 1: program.bas

A potential problem is shown with a Caution paragraph. It is formatted similarly to
the Analysis paragraph.

Caution This style will alert you to potential problems and offer some remedies or
tips to avoid them.

6

Table of Contents

1 A Brief Introduction to FreeBASIC..14

DIFFERENCES FROM QUICKBASIC...14

KEY FEATURES OF FREEBASIC..15

2 Numeric Data Types..18

SIGNED VERSUS UNSIGNED DATA TYPES..18

THE FLOATING POINT DATA TYPE..19

POINTER DATA TYPES..19

NUMERIC VARIABLES...19

THE DIM STATEMENT..20

SHARED VARIABLES..20

STATIC VARIABLES..21

COMMON VARIABLES...22

EXTERN AND IMPORT VARIABLES..22

DATA TYPE SUFFIXES..22

CHANGING THE DEFAULT DATA TYPE..23

USING DIFFERENT NUMBER FORMATS..24

Hexadecimal Numbers..24

Binary Numbers..24

Octal Numbers..24

Exponential Numbers..24

WHICH DATA TYPE TO USE?..25

OPTION EXPLICIT...25

A NOTE ABOUT OPTION EXPLICIT ...26

A LOOK AHEAD..26

EXCERCISES...27

3 Converting Numeric Data Types...28

IMPLICIT DATA CONVERSION...28

EXPLICIT DATA CONVERSION..30

Numeric Data Conversion Functions...30

Using Conversion Functions in Macros..33

Decimal Rounding Functions...36

A LOOK AHEAD..37

EXERCISES...38

4 Introduction to the C Runtime Library..39

THE #INCLUDE DIRECTIVE..39

 7

THE DECLARATION STATEMENT..41

RUNTIME CONVERSION FUNCTIONS...42

THE ADDRESSOF OPERATOR @...43

TESTING THE RUNTIME CONVERSION FUNCTIONS..45

A LOOK AHEAD..46

5 Arithmetic Operators..47

ARITHMETIC OPERATORS...47

SHORTCUT ARITHMETIC OPERATORS..51

BINARY NUMBER SYSTEM..52

THE SIGN BIT..52

A LOOK AHEAD..54

6 Bitwise Operators...55

THE NOT OPERATOR...55

THE AND OPERATOR...56

THE OR OPERATOR...58

THE XOR OPERATOR...60

THE EQV OPERATOR...61

THE IMP OPERATOR..63

SHORTCUT BITWISE OPERATORS..63

THE SHL AND SHR OPERATORS...64

BITWISE MACROS...66

A LOOK AHEAD..67

7 Mathematical Functions..68

TRIGONOMETRIC FUNCTIONS ..69

ABSOLUTE VALUE AND THE SGN FUNCTION...70

LOGARITHMS..71

THE C RUNTIME LIBRARY MATH CONSTANTS AND FUNCTIONS..72

CRT Math Constants..72

Selected CRT Math Functions..74

A LOOK AHEAD..75

8 Pointer Data Type...76

POINTERS AND MEMORY...76

TYPED AND UNTYPED POINTERS..78

POINTER OPERATORS...78

MEMORY FUNCTIONS...78

POINTER ARITHMETIC AND POINTER INDEXING...80

8

POINTER FUNCTIONS...82

SUBROUTINE AND FUNCTION POINTERS...83

CREATING A CALLBACK FUNCTION..85

POINTER TO POINTER..89

A LOOK AHEAD..92

9 String Data Types...93

DYNAMIC STRINGS..94

FIXED LENGTH STRINGS...96

ZSTRINGS..97

WSTRINGS...99

STRING FUNCTIONS...99

LEN VERSUS SIZEOF...101

USING STRING FUNCTIONS WITH ZSTRING POINTERS...103

THE MK* AND CV* STRING FUNCTIONS...104

NUMERIC STRING CONVERSION FUNCTIONS...107

WIDE STRING FUNCTIONS...108

STRING OPERATORS..109

CRT CHARACTER AND STRING FUNCTIONS..109

Character Functions..109

Strtok Function..113

A LOOK AHEAD..115

10 Composite Data Types...116

TYPES..116

Types Within Types...118

Type Assignments...121

Pointers to Types...124

Type Memory Arrays...127

Dynamic Arrays in Types...129

Function Pointers in Types..134

Forward References..137

Bit Fields...137

The Field Property...138

TYPE INITIALIZATION..139

UNIONS..140

Types in Unions...141

Unions in Types...142

A LOOK AHEAD..144

 9

11 Symbolic Constants...145

#DEFINE AS A CONSTANT...145

THE CONST KEYWORD...146

CONST VERSUS #DEFINE...146

ENUMERATIONS..146

A LOOK AHEAD..147

12 Arrays..149

ONE-DIMENSIONAL ARRAYS...149

One-Dimensional Array Indexes..149

TWO-DIMENSIONAL ARRAYS...150

Two-Dimensional Array Indexes..150

MULTI-DIMENSIONAL ARRAYS..150

DYNAMIC ARRAYS...152

ARRAY FUNCTIONS..155

ARRAYS OF TYPES..158

ARRAYS IN TYPES...162

ARRAY INITIALIZATION..166

TYPE ARRAY INITIALIZATION..168

CRT ARRAY FUNCTIONS...170

USING THE -EXX COMPILER SWITCH..172

A LOOK AHEAD..173

13 Date and Time Functions...174

INTRINSIC DATE AND TIME FUNCTIONS...174

EXTENDED DATE AND TIME FUNCTIONS..176

DateAdd Function..176

DateDiff Function..180

DatePart Function...181

DateSerial Function...183

DateValue Function...184

Day Function...185

Hour Function..185

Minute Function..187

Month Function...187

MonthName Function..187

Now Function..188

Second Function..188

TimeSerial Function...189

10

TimeValue Function...190

Year Function..190

Weekday Function...190

WeekDayName Function...191

A LOOK AHEAD..191

14 The Format Function...192

STRING FORMAT CHARACTERS..192

NUMERIC FORMAT CHARACTERS..192

DATE FORMAT CHARACTERS...194

TIME FORMAT CHARACTERS...196

A LOOK AHEAD..197

15 Console Programming...199

THE CONSOLE SCREEN..199

THE CONSOLE FUNCTIONS...199

CONSOLE COLORS..201

POSITIONING TEXT..203

PRINTING TEXT...204

DETERMINING AND SETTING THE SIZE OF THE CONSOLE...204

GETTING USER INPUT..206

INKEY..207

GETKEY..209

INPUT..209

LINE INPUT..210

USING THE MOUSE...210

CREATING A TEXT VIEW PORT..212

A LOOK AHEAD..216

16Control Structures..217

A PROGRAM IS A STATE MACHINE..217

THE IF STATEMENT BLOCK..218

Using Bitwise Operators in an If Statement..219

The Not Problem...219

The Single-Line If Statement...219

The If Code Block..220

Nested If Statements..220

The Else Statement...221

The ElseIf Statement...221

THE IIF FUNCTION ..223

 11

THE SELECT CASE STATEMENT BLOCK...226

17 Appendix A: GNU Free Documentation License..229

18 Appendix B: Setting Up FreeBasic Under Microsoft Windows...................236

INSTALLING FBIDE..238

SETTING UP FBIDE..238

COMPILING YOUR FIRST PROGRAM...239

ADDITIONAL RESOURCES...240

INTRODUCTION TO FBIDE..241

GENERAL SETTINGS..241

MOST RECENT USED FILES LIST...243

SYNTAX HIGHLIGHTING...243

THEMES..244

KEYWORDS..245

TABBED INTERFACE...246

LINE NUMBERS...246

RESULTS WINDOW...247

SUBROUTINE AND FUNCTION FOLDING..247

SAVE FILE INDICATOR..248

QUIT TAB SELECT AND CLOSE TAB..248

EDITING AND FORMAT FUNCTIONS..248

BLOCK COMMENT-UNCOMMENT...249

BRACKET MATCHING..250

SUBROUTINE AND FUNCTION BROWSER..251

RUNNING PROGRAMS AND CREATING EXECUTABLES...251

ADDING AN ICON TO YOUR PROGRAM..252

FREEBASIC HELP FILE...253

19 Appendix D: Installing FreeBASIC under Linux..254

12

If we look at the fact, we shall find that the great inventions of the age are not, with us at
least, always produced in universities.

Charles Babbage

 13

1 A Brief Introduction to FreeBASIC

FreeBASIC is a 32-bit BASIC compiler that outputs native code for Microsoft
Windows, Linux and DOS via DJGPP. FreeBASIC is also Open Source, which means any
one may freely view and edit the source to suit their needs. Quickbasic Compatibility is
FreeBASIC's call to fame, for it is the most compatible compiler available.

Differences from QuickBASIC

● Default (DEF###) type of not explicitly declared variables

● FreeBASIC: INTEGER

● QuickBASIC: Single

● INTEGER's size

● FreeBASIC: 32-bit, use SHORT type for 16-bit integers

● QuickBASIC: 16-bit

● Function calling

● FreeBASIC: All functions must have been declared, even with CALL.

● QuickBASIC: With CALL it is possible to invoke prototype-less functions.

● Arrays not declared

● FreeBASIC: All functions must be explicitly declared.

● QuickBASIC: Arrays are automagically created with up to 10 indexes.

● Variables with the same names as keywords

● FreeBASIC: Not allowed, even with suffixes.

● QuickBASIC: Allowed if no suffix is used (ie, dim LEFT as integer).

● Alignment / Padding of TYPE fields

● FreeBASIC: Same as in C, use FIELD=constant to change.

● QuickBASIC: Never done.

● Fixed-Length strings

● FreeBASIC: Real length is the given len plus one (null char), even on TYPE
fields. Strings are filled with nulls, so strings can't contain null characters.

● QuickBASIC: Strings are filled with whitespaces.

14

Key Features of FreeBASIC

● Built-in Graphics library

● Completely compatible with old QB Graphics commands, but it builds on this
to offer much more.

● Support for high resolutions and any color depth, and any number of
offscreen pages.

● All drawing functions can operate on screen as well as on offscreen surfaces
(GET/PUT buffers) of any size.

● Advanced sprites handling, with clipping, transparency, alpha and custom
blending.

● Direct access to screen memory.

● BMP loading/saving capabilities.

● OpenGL support: init an OpenGL mode with a single command, then use GL
instructions directly.

● Keyboard, mouse and joystick handling functions.

● The Graphics library is fast: MMX optimized routines are used if MMX is
available.

● Small footprint: when using Graphics commands, your EXEs will grow in size
by a minimum of 30/40K only.

● Stand-aloness: generated EXEs will depend only upon system libs, no
external libraries required.

● As all of FB, also gfxlib is completely multiplatform: underneath it uses
DirectX or GDI (if DX is not available) under Win32, direct VGA/ModeX/VESA
access under DOS, or raw Xlib under Linux.

● Create OBJ's, LIB's, DLL's, and console or GUI EXE's

● You are in no way locked to an IDE or editor of any kind.

● You can create static and dynamic libraries adding just one command-line
option (-lib or -dll).

● Debugging support

● Full debugging support with GDB (the GNU debugger) or Insight (the GDB
GUI frontend)

● Array bounds checking (only enabled by the -exx command-line option)

● Null pointers checking (same as above)

● Function overloading

● DECLARE SUB Test OVERLOAD (a AS DOUBLE)

● DECLARE SUB Test (a AS SINGLE)

● DECLARE SUB Test (a AS INTEGER, b AS INTEGER = 1234)

● DECLARE SUB Test (a AS BYTE, b AS SHORT)

 15

● Inline Assembly

● Intel syntax.

● Reference variables directly by name with no "trick code" needed.

● Most of the known C libraries can be used directly, without wrappers

● GTK+ 2.0: cross-platform GUI Toolkit (over 1MB of headers, including
support for Glade, libart and glGtk)

● libxml and libxslt: defacto standard XML and XSL libraries

● GSL - GNU Scientific library: complex numbers, vectors and matrices, FFT
linear algebra, statistics, sorting, differential equations, and a dozen other
sub-libraries with mathematical routines

● GMP - GNU Multiple Precision Arithmetic Library: known as the fastest
bignum library

● SDL - Simple DirectMedia Layer: multimedia library for audio, user input, 3D
and 2D gfx (including the sub-libraries such as SDL_Net, SDL_TTF, etc)

● OpenGL: portable library for developing interactive 2D and 3D graphics
games and applications (including support for frameworks such as GLUT and
GLFW)

● Allegro: game programming library (graphics, sounds, player input, etc)

● GD, DevIL, FreeImage, GRX and other graphic-related libraries

● OpenAL, Fmod, BASS: 2D and 3D sound systems, including support for mod,
mp3, ogg, etc

● ODE and Newton - dynamics engines: libraries for simulating rigid body
dynamics

● cgi-util and FastCGI: web development

● DirectX and the Windows API - the most complete headers set between the
BASIC compilers available, including support for the Unicode functions

● DispHelper - COM IDispatch interfaces made easy

● And many more!

● Support for numeric (integer or floating-point) and strings types

● DECLARE SUB Test(a AS DOUBLE = 12.345, BYVAL b AS BYTE = 255, BYVAL s
AS STRING = "abc")

● Unicode support

● Besides ASCII files with Unicode escape sequences (\u), FreeBASIC can parse
UTF-8, UTF-16LE, UTF-16BE, UTF-32LE and UTF-32BE source (.bas) or header
(.bi) files, they can freely mixed with other sources/headers in the same
project (also with other ASCII files).

● Literal strings can be typed in the original non-latin alphabet, just use an
text-editor that supports some of the Unicode formats listed above.

● The WSTRING type holds wide-characters, all string functions (like LEFT,
TRIM, etc) will work with wide-strings too.

16

● Unlimited number of symbols

● Being a 32-bit application, FreeBASIC can compile source code files up to 2
GB long.

● The number of symbols (variables, constants, et cetera) is only limited by
the total memory available during compile time. You can, for example,
include OpenGL, SDL, BASS, and GTK simultaneously in your source code.

 17

2 Numeric Data Types

When starting out with a new programming language, one of the first things you
should learn is the language’s data types. Virtually every program manipulates data, and
to correctly manipulate that data you must thoroughly understand the available data
types. Data type errors rank second to syntax errors but they are a lot more troublesome.
The compiler can catch syntax errors and some data type errors, but most data type
errors occur when the program is running, and often only when using certain types of
data. These kind of intermittent errors are difficult to find and difficult to fix. Knowing the
kind, size and limits of the data types will help keep these kinds of errors to a minimum.

FreeBasic has all the standard numeric data types that you would expect for a
Basic compiler, as well as pointers which you usually only find in lower-level languages
such as C. Table 3.1 lists all the numeric data types that FreeBasic supports. In the list
below, you will notice that Integer and Long are grouped together. This is because a Long
is just an alias for Integer. They are exactly the same data type.

Numeric Data Types Size Limits

Byte 8-bit signed, 1 byte -128 to 127

Double 64-bit, floating point, 8
bytes

-2.2E-308 to +1.7E+308

Integer (Long) 32-bit, signed, 4 bytes -2,147,483,648 to
2,147,483,647

LongInt 64-bit, signed, 8 bytes -9,223,372,036,854 775 808
to 9,223

372,036,854,775,807

Short 16-bit, signed, 2 bytes -32,768 to 32,767

Single 32-bit, floating point, 4
bytes

1.1 E-38 to 3.43 E+38

UByte 8-bit, unsigned, 1 byte 0 to 255

UInteger 32-bit, unsigned , 4 bytes 0 to 4,294,967,295

ULongInt 64-bit, unsigned, 8 bytes 0 to
18,446,744,073,709,551,61

5

Ushort 16-bit, unsigned, 2 bytes 0 to 65365

Pointer 32-bit, memory address, 4
bytes

Must be initialized at
runtime

Table 2.1: FreeBasic Numeric Data Types

Signed Versus Unsigned Data Types

Signed data types, as the name implies, can be negative, zero or positive.
Unsigned types can only be zero or positive, which give them a greater positive range

18

than their signed counterparts. If your data will never be negative, using the unsigned
data types will allow you to store larger numbers in the same size variable.

The Floating Point Data Type

The floating point data types, Single and Double are able to store numbers with
decimal digits. Keep in mind that floating-point numbers are subject to rounding errors,
which can accumulate over long calculations. You should carry more than the number of
decimal digits than you need to ensure the greatest accuracy.

Pointer Data Types

Pointer data types are unlike the other data types in that they store a memory
address and not data. Since pointers are handled differently than regular data types, a
separate chapter has been devoted to the subject and will not be examined in this
chapter.

Numeric Variables

The numeric data types define what numbers you can work with in your program,
but you must create variables to actually hold the numbers. A variable is a name
composed of letters, numbers or the underscore character such as MyInteger, or
MyInteger2. There are rules for variable naming though, that you must keep in mind.

• Variable names must start with a letter or the underscore character. It is not
recommended however, to use the underscore character, as this is generally used
to indicate a system variable, and it is best to avoid it in case there may be
conflicts with existing system variable names.

• Most punctuation marks have a special meaning in FreeBasic and cannot be used
in a variable name. While the period can be used, it is also used as a deference
operator in Types, and so should not be used to avoid confusion or potential
problems with future versions of the compiler.

• Numbers can be used in a variable name, but cannot be the first character. MyVar1
is legal, but 1MyVar will generate a compiler error.

The compiler creates variables in two ways. The first method, which isn’t
recommended and has been moved to the QB compatibility mode, is to let the compiler
create variables on their first use. When the compiler first encounters a name in a
program that is not a reserved word or keyword, it creates a variable using that name
with the default data type. In most cases, the default data type is an integer. You can
change the default variable type by using the DEF### directive, which will be covered
later in this chapter. To enable these features, you must compile your program with either
“-lang qb” or “-lang deprecated”. The problem with the first-use method is that it is very
easy to introduce hard-to-find bugs in your program.

 19

The term “bug” for a software error has a long, and somewhat disputed history. The
term predates modern computers and was used to describe industrial or electrical
defects. Its use in relation to software errors is credited to Grace Hopper, a pioneer in
the field of software design. According to the story, a moth was discovered between two
electrical relays in a Mark II computer. Hopper made a note of it in her journal, along
with the moth, and the term became associated with software errors after the incident.
The moth is now on display at the Smithsonian.1

The Dim Statement

The second, and preferred method is to explicitly declare variables in your program
using the Dim statement. The Dim statement instructs the compiler to set aside some
memory for a variable of a particular data type. For example, the statement Dim
myInteger as Integer instructs the compiler to set aside 4 byes of storage for the
variable myInteger. Whenever you manipulate myInteger in a program, the compiler will
manipulate the data at the memory location set aside for myInteger. Just as with variable
names, there are some rules for the use of Dim as well.

1. Dim myVar As Integer. This will create a single integer-type variable.

2. Dim As Integer myVar, myVar2. This will create two integer-type
variables.

3. Dim myVar As Double, myVar2 As Integer. This will create a double-
type variable and an integer-type variable.

4. Dim myVar as Integer = 5. This will create an integer-type variable
and set the value of the variable to 5.

5. Dim myVar As Double = 5.5, myVar2 As Integer = 5. This will
create a double-type variable and set the value to 5.5, and an integer-
type variable and set the value to 5.

6. Dim Shared as Integer myInt. This will create a shared (global)
variable myInt accessible anywhere within your program.

Caution Dim myVar, myVar2 As Double. This may look like it creates two
double-type variables, however myVar will not be defined and will result in compilation
errors. Use rule 2 if you want to create multiple variables of the same type.

Shared Variables

As you can see in rule 6 above, using the Dim Shared version of Dim creates a
shared variable. This means that any variable you create as Shared can be accessed
anywhere within the program’s current module. To put it another way, the scope of a
shared variable is module level scope. Scope refers to the visibility of a variable, where
you can access a particular variable within a program. There are different levels of scope
and each are discussed in detail later in this book.

The number of variables in your program (as well as the program itself) is limited only
by your available memory, up to 2 gigabytes.

1 See WhatIs.com Definitions: http://whatis.techtarget.com/sDefinition/0,290660,sid9_gci211714,00.html
20

Static Variables

Static variables are used within subroutines and functions and retain their values
between calls to the subroutine or functions. The following program demonstrates using a
static variable as a counter within a subroutine.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Sub StaticSub()

 'Dimension a static variable

 Static cnt As Integer

 'Increment the count

 cnt += 1

 Print "In StaticSub";cnt;" time(s)."

End Sub

'Dimension working variable

Dim i As Integer

'Call sub 10 times

For i = 1 To 10

 StaticSub

Next

Sleep

End

Listing 2.1: static.bas

Analysis: In line 1 the subroutine StaticSub is defined. A subroutine is code that is
executed only when called by the subroutine name which, in this case, is StaticSub. Line
3 dimensions a static variable cnt, which is incremented when the subroutine is called in
line 6. Line 7 prints out the current value of cnt to the console screen.

In line 10 a working varible that will be used in the For-Next is declared. Lines 14
through 16 define the For-Next loop which will call StaticSub 10 times. Line 18 waits for a
key press and line 19 ends the program.

Running the program in FBIde, you should get the following output.

In StaticSub 1 time(s).

In StaticSub 2 time(s).

In StaticSub 3 time(s).

In StaticSub 4 time(s).

 21

In StaticSub 5 time(s).

In StaticSub 6 time(s).

In StaticSub 7 time(s).

In StaticSub 8 time(s).

In StaticSub 9 time(s).

In StaticSub 10 time(s).

Output 2.1: Output of static.bas

As you can see from the output, the value of cnt is preserved between calls to the
subroutine. Static variables can only be defined within a subroutine or function. Variables
declared outside of a subroutine or function, that is at the module level, will maintain
their values and are static by default.

Common Variables

Variables declared as Common can be shared between multiple code modules, that
is between multiple bas files in the same program. Common variables will be discussed in
detail later in this book.

Extern and Import Variables

Extern and Import are used when creating DLL's and like Common, are designed to
share variables in different modules. Extern and Import will be discussed in detail in the
chapter on creating DLLs with FreeBasic.

Data Type Suffixes

You can use QuickBasic style data type suffixes in FreeBasic, although this feature
was implemented mainly to support QuickBasic legacy code and is only available when
compiling with the “-lang qb” or “-lang deprecated” compiler options. Table 3.2 lists the
data type suffixes.

Data Type Suffix

Byte b

Short s

Integer %

Long &, l

Ulong ul

LongInt ll

UlongInt ull

Single !

Double #

String $

Table 2.2: Supported Data Type Suffixes

22

Changing The Default Data Type

As already mentioned, the default data type for an undeclared variable is an
integer. The default data type can be changed for a range of variables by using one of
the DEF statements. Table 3.3 lists all the DEF statements available in FreeBasic.

Statement Comment

DEFBYTE a-b Sets the default data type to byte for
undeclared variables starting with letter
range.

DEFDBL a-b Sets the default data type to double for
undeclared variables starting with letter
range.

DEFINT a-b Sets the default data type to integer for
undeclared variables starting with letter
range.

DEFLNG a-b Sets the default data type to long for
undeclared variables starting with letter
range.

DEFLNGINT a-b Sets the default data type to longint for
undeclared variables starting with letter
range.

DEFSHORT a-b Sets the default data type to short for
undeclared variables starting with letter
range.

DEFSNG a-b Sets the default data type to single for
undeclared variables starting with letter
range.

DEFSTR a-b Sets the default data type to string for
undeclared variables starting with letter
range.

DEFUBYTE a-b Sets the default data type to ubyte for
undeclared variables starting with letter
range.

DEFUINT a-b Sets the default data type to uinteger
for undeclared variables starting with
letter range.

DEFULNGINT a-b Sets the default data type to ulongint for
undeclared variables starting with letter
range.

DEFUSHORT a-b Sets the default data type to ushort for
undeclared variables starting with letter
range.

Table 2.3: FreeBasic DEF Statements

 23

The DEF statement will affect all variables that start with a letter in the given
range. So if you add DEFDBL m-n to your program, any variable starting with m or n, will
default to a double-type. All other variables that start with different numbers will default
to an integer-type. A Dim statement will override any DEF statement, so if you declare an
integer variable starting with m, it will be an integer, even though the DEFDBL is in
effect.

Using Different Number Formats

Besides decimal numbers, FreeBasic is able to recognize numbers in hexadecimal,
binary and octal formats. Table 3.4 lists the number base and format to use.

Number Base Format

Decimal myVar = 254

Hexadecimal myVar = &HFE

Binary myVar = &B11111110

Octal myVar = &O376

Exponential Numbers myVar = 243E10

Table 2.4: Format of Number Bases

Hexadecimal Numbers

Hexadecimal is a base 16 numbering scheme and have digits in the range of 0 to F.
Hexadecimal numbers are commonly used as constant values in the Windows API and
many third party libraries as it is a compact way to represent a large value. To indicate a
hexadecimal number, use the &H prefix.

Binary Numbers

Binary is a base 2 numbering scheme and have digits in the range of 0 and 1.
Binary is the language of the computer. Although we can enter numbers and letters into
the computer, it all must be translated into binary before the computer can understand
it. To indicate a binary number, use the &B prefix.

Octal Numbers

Octal is a base eight numbering scheme and have digits in the range of 0 to 7.
Octal numbers were very popular in early computer systems, but aren’t used much today
except in some specialized applications. To indicate an octal number, use the &O prefix.

Exponential Numbers

You can use exponential numbers in your program by adding the E suffix followed
by the power. To use the number 105, you would write the number as 10E05. You can
directly set a double or single type variable using the exponent format. You can also use
negative exponents such as 10E-5, which when printed to the screen would like 1.e­004.

24

Which Data Type To Use?

There are a number of different data types available, so how do you choose the
right data type for any given application? The rule of thumb is to use the largest data
type you need to hold the expected range of values. This may seem like stating the
obvious, but many programs fail because the programmer did not fully understand the
range of data in their program. When you crate a program, you should map out not only
the logic of the program, but the data associated with each block of logic. When you map
out the data ahead of time, you are less likely to run into data-type errors.

For example, if you were working with ASCII codes, which range from 0 to 255, an
ubyte would be a good choice since the range of an ubyte is the same as the range of
ASCII codes, and you are only using 1 byte of memory. There is another consideration
though, the “natural” data size of the computer. On a 32-bit system, the natural data size
is 4 bytes, or an integer. This means that the computer is optimized to handle an integer,
and does so more efficiently, even though you are “wasting” 3 bytes of memory by using
an integer for an ASCII code.

In most cases an integer is a good general-purpose choice for integer data. The
range is quite large, it handles both negative and positive numbers and you benefit from
using the computer’s natural data type. For floating point data, a double is a good choice
since, like the integer, it has a good range of values and better precision than a single.
For large integer data you should use a uinteger for positive data or a longint for large
negative and positive numbers. These are only suggestions; what data type you end up
using will be dictated by the needs of your program.

These “rules of thumb” apply to single variable declarations where a few wasted bytes
are not critical. However, as you will see in the chapter on arrays, choosing the right
sized data type is critical in large arrays where a few wasted bytes can add up to a
large amount of wasted memory.

Option Explicit

You may notice when looking at other people's source code, the compiler directive
Option Explicit has been used at the top of each program. A compiler directive is code
that instructs the compiler to do something. In the case of Option Explicit, it instructs the
compiler to make sure that any variable being used has been properly Dim’ed. Although
you can write a program without using Option Explicit and explicitly Dim’ing each
variable, you run the risk of introducing nasty, hard-to-find bugs as the following short
program illustrates.

1

2

3

4

5

6

7

8

Dim myInteger as Integer

'set myInteger to a value

myInteger = 5

'Oops we mispelled the variable name

Print "The output of myInteger is";myIntger

'wait for a keypress

Sleep

End

Listing 2.2: nooptionexplicit.bas

 25

Analysis: In line 1 myInteger is being declared to the compiler. The compiler will
use this declaration to allocate space for the variable. In line 3 the variable is being
initialized to a value, in this case 3. The Print statement in line 5 will print out the result
to the console screen. Sleep, listed in line 7, will wait for a keypress and the End keyword
in line 8 will end the program. The End statement isn't mandatory at the end of a
program but should be used especially if you want to return an exit code to the operating
system.

After typing this program into FBIde and running the program, you should see the
following output.

The output of myInteger is 0

Output 2.2: nooptionexplicit.bas

The output should be 5, but as you can see, the result isn’t what was expected or
wanted. Since Option Explicit wasn’t used in the program, the compiler created a new
variable when it encountered the misspelled variable name, myIntger, in the print
statement. If this was large and complicated program, you can see how difficult it would
be to track this error down and fix it.

Now, add Option Explicit at the top of the program and run it again. You should see
the following error message in the results pane of FBIde.

Variable not declared, found: 'myIntger'

Print "The output of myInteger is";myIntger

 ^

Output 2.3: Modified nooptionexplicit.bas

Here the compiler detected the misspelled variable name and informed us of the
problem. You should always use Option Explicit in your programs. A few seconds of extra
typing will save you hours of frustration.

A Note about Option Explicit

Recent versions of the FreeBASIC compiler do not allow OPTION commands
including OPTION EXPLICIT. From now on OPTION EXPLICIT is implied and your programs
will behave as if you used OPTION EXPLICIT. It is a good rule of thumb to always implicitly
declare your variables, so get in the habit now. To compile a source file that uses OPTION
EXPLICIT, either use “-lang deprecated” or remove the OPTION EXPLICIT line from the
source file.

A Look Ahead

When working with numeric data, there are times when it becomes necessary to
convert one data type to another. FreeBasic offers two conversion methods, implicit and
explicit, which you will see in the next chapter.

26

Excercises

1) What data type would be the best to store the number 196?

2) What data type would be the best to store the number 2.134?

3) What data type is the best for general usage on 32-bit systems?

4) What is the difference between signed and unsigned data types?

5) What prefix would you use to designate a binary number?

6) What prefix would you use to designate a hexidecimal number?

7) What Alphabetic letters are allowed in a hexidecimal number?

8) What would the hexidecimal number 1AF be in decimal form?

 27

3 Converting Numeric Data Types

When you work with numbers there will come a time when you will need to convert
a variable from one data type to another data type. In FreeBasic there are two types of
data conversion. Implicit, where the compiler will automatically convert the data types
during an assignment or calculation, and explicit using one of the predefined conversion
functions.

Implicit Data Conversion

Implicit data conversion occurs either through an assignment statement, or as the
result of a calculation. Where implicit data conversion can cause a problem is in the loss
of precision that can result when converting a large data type to a smaller data type.
While implicit data conversion eases the programming process somewhat, you want to
make sure that the results you are getting are what you expect. You should always check
the result of an implicit conversion to make sure the range of values being converted is in
the expected range.

The following short program illustrates the conversion that takes place during an
assignment statement.

1

2

3

4

5

6

7

8

9

10

Dim As Double myDbl

Dim As Integer myInt

'Set myDbl to a float value

myDbl = 5.56

'Assign myInt the float, will be converted to int

myInt = myDbl

Print "myInt ="; myInt

Sleep

End

Listing 3.1: assignconv.bas

Analysis: In lines 1 and 2 two variable are being declared, myDbl, a double-type
varibale and myInt, an integer-type variable. Line 3 is a comment which, as you can see,
starts with the ' (single quote) character. In line 4 the double-type variable is being
initialized to the floating-point value 5.56. In line 6 the double is being assigned to an
integer variable, invoking the implicit conversion. In line 7 the Print displays the result on
the console window. In line 8 the program waits for a key press with the Sleep statement
and in line 9 the End statement is used to end the program.

Running the program will result in the following output.

myInt = 6

Output 3.1: assignconv.bas

28

In the program, the value of myDbl which is a double-type variable, was set to
5.56. When myInt was assigned this float value, the compiler converted the value to an
integer, and then rounded it up to 6. Maybe you were just looking for the whole number
portion of 5? In this case, your result would be incorrect, although you may not know until
later in the program. This type of subtle bug is another one of those problems that are
hard to track down and fix.

Caution Even if the compiler is producing the correct result, there is no guarantee
that future versions of the compiler will. It may be necessary to change the behavior of
the compiler to add features or fix a bug, and you may find yourself with a program that
suddenly quits working.

The next little program illustrates the implicit conversion that takes place during a
calculation. In this example, the two integer operands are converted to double-types
during the division calculation.

1

2

3

4

5

6

7

8

9

10

Dim As Double myDbl

Dim As Integer myInt1, myInt2

'Assign values to myInt1, myInt2

myInt1 = 5

myInt2 = 3

myDbl = myInt1 / myInt2

Print "myDbl ="; myDbl

Sleep

End

Listing 3.2: calcconv.bas

Analysis: Line 1 and 2 in the program are the alternate Dim statement formats. You
can use this format to declare multiple variables of the same type. In line 4 and 5, the
variables are initialized. In line 6 the / character is the division operator. The result of the
division operation will be implicitly converted to a double-type in the assignment
statement. Line 7 prints the newly converted value to the screen and in lines 8 and 9, the
program will wait for a key press and then end.

Running the program produces the following output.

myDbl = 1.66666666666667

Output 3.2: calconv.bas

The result is as expected since the double-type has a greater precision than the
integer-type. However, consider this program and its output, which demonstrates the
implicit rounding during calculations.

 29

1

2

3

4

5

6

7

8

9

10

Dim As Double myDbl1, myDbl2

Dim As Integer myInt

'Assign values to myInt1, myInt2

myDbl1 = 5.6

myDbl2 = 3.1

myInt = myDbl1 / myDbl2

Print "myInt ="; myInt

Sleep

End

Listing 3.3: calcconv2.bas

Analysis: This program is similar to the program in Listing 4.2 except the
conversion process is from two double-type variables to an integer. Lines 1 and 2 declare
the working variables. Lines 4 and 5 set the values of the two double-type variables. In
line 6 the double-type division result is implicitly converted to an integer, resulting in
precision loss. Line 7 prints the result to the console window and lines 8 and 9 wait for a
key press and end the program.

The output of the program:

myInt = 2

Output 3.3: calconv2.bas

In this example, the two double-type variables were converted to integers and
then the division operation was performed. Since 5.6 was rounded up to 6 during the
conversion, the result is 2 rather than 1. This may not be a problem, but you should be
aware that these types of conversions occur when working with mixed precision types.

Explicit Data Conversion

There is an alternative to implicit data conversion, explicit data conversion where
you use one of FreeBasic’s built-in conversion functions. Since these functions are
designed for conversion, they return consistent results and are unlikely to change even if
the implicit rules of the compiler change. Even though it is more work, it is always safer
to explicitly convert data to the needed data type before carrying out operations on that
data.

Numeric Data Conversion Functions

Table 4.1 lists all the conversion functions. Keep in mind that these functions do
not check for overflow, so be sure that the value passed to these functions is in the
expected range.

30

Function Syntax Purpose Comment

Cast B = Cast(datatype,
expression)

Convert
expression to
data-type listed.

Datatype is any of the
available FreeBasic data-
types. Expression is a
numeric value, variable or
expression.

CByte B =
CByte(expression)

Convert
expression to
byte.

Expression must be in the
range –128 to 127.

CDbl B = CDbl(expression) Convert
expression to
double.

Expression must be in the
range of -2.2E-308 to
+1.7E+308.

Cint B = Cint(expression) Convert
expression to
integer.

Expression must be in the
range of –2,147,483,648 to
2,147,483,647.

CLng B = CLng(expression) Convert
expression to
long. Long is an
alias for integer.

Expression must be in the
range of –2,147,483,648 to
2,147,483,647.

ClngInt B =
ClngInt(expression)

Convert
expression to
long int.

Expression must be in the
range of –
9,223,372,036,854,775,808
to
9,223,372,036,854,775,807

CShort B =
CShort(expression)

Convert
expression to
short.

Expression must be in the
range of -32768 to 32767.

CUByte B =
CUByte(expression)

Convert
expression to
unsigned byte.

Expression must be in the
range of 0 to 255.

CUInt B = CUInt(expression) Convert
expression to
unsigned integer.

Expression must be in the
range of 0 to 4,294,967,296.

CULngInt B =
CULngInt(expression)

Convert
expression to
long unsigned
integer.

Expression must be in the
range of 0 to
18,446,744,073,709,551,615
.

CUShort B =
CUShort(expression)

Convert
expression to
unsigned short.

Expression must be in the
range of 0 to 65535.

CSng B = SCng(expression) Convert
expression to
single.

Expression must be in the
range of 1.1 E-38 to 3.43
E+38.

Table 3.1: FreeBasic Conversion Functions

 31

When examining conversion functions it is important to understand how the
function rounds with both negative and positive numbers. The FreeBasic conversion
functions round numbers up, making positive number more positive and negative
numbers more negative. The following program illustrates the rounding with Cast and
Cint, as well as demonstrating that the conversion functions will work with expressions as
well as numbers.

1

2

3

4

5

6

7

8

9

10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Dim as Double myDouble1, myDouble2, myDouble3

Dim as Integer myInt

'Set variable ranges

myDouble1 = 143.5

myDouble3 = 143.4

myDouble2 = ­143.5

myInt = 12

'Show cast in action

Print "** Cast **"

Print "Double1 ";myDouble1;" cast to integer ";Cast(Integer, myDouble1)

Print "Double2 ";myDouble2;" cast to integer ";Cast(Integer, myDouble2)

Print "Double3 ";myDouble3;" cast to integer ";Cast(Integer, myDouble3)

Print "Expression ";myDouble1;" + ";myInt;" cast to double ";

Print Cast(Double, myDouble1 + myInt)

Print

'Show cint in action

Print "** CInt **"

Print "Double1 ";myDouble1;" cint to integer ";CInt(myDouble1)

Print "Double2 ";myDouble2;" cast to integer ";CInt(myDouble2)

Print "Double3 ";myDouble3;" cast to integer ";CInt(myDouble3)

Print "Expression ";myDouble1;" + ";myInt;" cast to integer ";CInt(myDouble1 + myInt)

Print "Expression ";myDouble2;" + ";myInt;" cast to integer ";CInt(myDouble2 + myInt)

Print

Sleep

End

Listing 3.4: convert.bas

Analysis: This program demonstrates the built-in FreeBasic conversion functions.
Lines 1 and 2 declare the working variables using the alternate format of the Dim. Two
tables of information are printed to the console in line 12 to 18 and lines 21 to 27. In lines
13 to 16, the result of the Cast function is printed directly to the screen, as is the Cint
function in lines 22 to 26. Normally the values would be saved in another variable to be
used in the program. Line 16 ends with a semi-colon. This instructs the compiler not to
32

print a carriage return after the print statement, so that when the value of Cast is printed
in line 17, the value will appear on the same line as the data printed in line 16. The
program is closed in the usual way using Sleep and End.

Running the program will produce the output shown below.

** Cast **

Double1 143.5 cast to integer 144

Double2 ­143.5 cast to integer ­144

Double3 143.4 cast to integer 143

Expression 143.5 + 12 cast to double 155.5

** CInt **

Double1 143.5 cint to integer 144

Double2 ­143.5 cast to integer ­144

Double3 143.4 cast to integer 143

Expression 143.5 + 12 cast to integer 156

Expression ­143.5 + 12 cast to integer –132

Output 3.4: convert.bas

As you can see from the program, you can use both numbers and expressions in
the conversion functions. Keep in mind that if you pass an expression to a conversion
function, the evaluated expression must not exceed the limit of the target data type, or
an overflow will occur. Looking at the output you can see that the rounding for middle
values is up or greater in magnitude. 143.5 rounds up, making the resulting number more
positive and –143.5, more negative.

Using Conversion Functions in Macros

One area where the conversion functions listed in Table 4.1 are useful is in the
creation of macros. A macro is a small piece of executable code that the compiler inserts
into the program at designated areas. Macros are defined using the #Define compiler
directive. #Define has the format #Define name symbol. When the compiler encounters
name within the program code, it is replaced with symbol.

The following program creates a macro that packs a screen row and column
number into the high and low bytes of a uinteger. The conversion function Cint is used
since you will not always know the data type being passed to the macro, and you want to
be sure that you are working with known quantities.

 33

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

'Macro created by v1ctor

#define MAKDWORD(x,y) (cint(x) shl 16 or cint(y))

Dim myInt As Uinteger

Dim As Integer i, cnt

'Store row 5 column 5 in a single uinteger

myInt = MAKDWORD(5, 5)

'Set the width and height of the console window

Width 80, 25

'Print column headers

cnt = 1

For i = 1 To 80

 'Print columns as 12345678901...

 If cnt = 10 Then

 cnt = 0

 End If

 Locate 1, i

 'Convert to string so we don't get leading space

 Print Str(cnt)

 'Increment our counter

 cnt += 1

Next

'Print row headers

cnt = 2

For i = 2 To 25

 'Row numbers will be like col numbers

 If cnt = 10 Then

 cnt = 0

 End If

 Locate i, 1

 'Convert to string so we don't get leading space

 'We need the semi­colon so a line feed isn't printed

 'on line 25 which would scroll screen.

 Print Str(cnt);

 'Increment our counter

 cnt += 1

Next

'Print out string on saved location

Locate Hiword(myInt), Loword(myInt)

Print "We stored the screen location in a single uinteger!"

34

45

46

47

48

Sleep

End

Listing 3.5: makdword.bas

Analysis: In line 2 the #define compiler directive is used to create a macro. A
macro is an snippet of executable code that the compiler will insert into the code when it
finds the macro name, MAKDWORD. In lines 4 and 5 the working variables are declared.
In line 8, the variable myInt is initialized with the macro previously defined. The macro
stores the screen locations, row 5 and column 5 in the high and low word of the integer
variable.

In line 11 the Width statement is used to set the console screen to 80 columns and
25 rows. The variable cnt, which will be used to print out the column and row headers, is
set to 1. Lines 14 through 24 prints out the column headers using a For-Next loop. Line 19
uses the Locate statement to set the cursor position and line 36 prints out the value. The
numbers will range from 1 to 0 and then repeat.

In line 36 the Str function is used to convert the numeric value of cnt to a string so
that the Print statement will not insert a leading space. Print inserts a leading space when
printing numeric variables so they can accommodate a leading negative sign. Lines 26
through 39 print out the row headers in the same fashion as the column headers.

In line 42 the two functions Hiword and Loword are used to retrieve the high and
low bytes of the integer variable, which contain the row and column respectively. Line 45
and 46 wait for a key press and end the program in the usual fashion.

The macro is defined in line 2 takes two parameters, x and y. The compiler will
substitute MAKDWORD(x,y) with (cint(x) shl 16 or cint(y)) replacing x with the first
number and y with the second number. Cint is used within the macro so that no matter
what values are passed through x and y, the macro will always be working with integers.
The operators or and shl will be discussed later in the book.

The Locate statement expects a row number and column number to position text
on the screen. In line 42 we are using the two functions Hiword and Loword to return the
high (most significant) and low (least significant) words of the integer myInt, which
contain the row and column numbers respectively.

Running the program will produce the following output.

12345678901234567890123456789012345678901234567890123456789012345678901234567890

2

3

4

5 We stored the screen location in a single uinteger!

6

7

8

 35

9

0

1

2

3

4

5

6

7

8

9

0

Output 3.5: makdword.bas

#Define is fully explored in the chapter on symbolic constants later in the book.

Decimal Rounding Functions

FreeBasic has two built-in rounding functions for use with decimal numbers. Table
4.2 lists the functions along with their explanations.

Function Syntax Comment

Int B = Int(expression) Returns an integer value less than or equal to
the input.

Fix B = Fix(expression) Returns the integer part of the input.

Table 3.2: FreeBasic Rounding Functions

As with the other conversion functions, this should be tested with both negative
and positive numbers to see how the function behaves. The program intfix.bas listed
below illustrates the results returned by the functions as well as their use with
calculations.

1

2

3

4

5

6

7

8

9

10

11

'Create some double variables

Dim As Double myDouble1 = ­5.5, myDouble2 = 5.9

'Show rounding on negative and positive values

Print "Doubles:", myDouble1, myDouble2

Print "Int:", Int(myDouble1), Int(myDouble2)

Print "Fix:", Fix(myDouble1), Fix(myDouble2)

Print

'Try some calculation expressions

myDouble1 = ­15.78

myDouble2 = 22.12

Print "Expression:",myDouble1;" +";myDouble2;" = "; Str(myDouble1 + myDouble2)

36

12

13

14

15

16

17

18

Print "Int:", Int(myDouble1 + myDouble2)

Print "Fix:", Fix(myDouble1 + myDouble2)

'Wait for keypress

Sleep

End

Listing 3.6: intfix.bas

Analysis: Line 2 uses the alternative syntax for Dim to declare and initialize the
working variables. Line 4 through 6 display the results of the conversion function suing
both positive and negative numbers. Line 9 and 10 set the values for the variables to be
used in calculations. Lines 12 through 14 display the results of the conversion functions
using calculations so FreeBasic resolves the calculations before invoking the functions.
Lines 17 and 18 end the program in the usual way.

The result of running the program is shown in Output 4.6.

Doubles: ­5.5 5.9

Int: ­6 5

Fix: ­5 5

Expression: ­15.78 + 22.12 = 6.34

Int: 6

Fix: 6

Output 3.6: infix.bas

Notice that in the output Int returns a –6 for the input –5.5, since 6 is less than –
5.5, and 5 for 5.9 since 5 is less than 6. Fix on the other hand truncates the decimal and
returns the integer portion of the double. As you can see both functions will also work
with an expression, in this myDouble1 + myDouble2. Which function you would use
depends on what behavior you would need with negative numbers, as they both return
similar results with positive numbers.

A Look Ahead

In addition to the built-in conversion functions, there are a number of functions
available in the C Runtime Library, which is the subject of the next chapter.

 37

Exercises

1) How do you stop your program from printing a carriage return at the end of a line?

2) What function would you use to convert an unknown value to a Double?

3) What function would you use to convert an unknown value to an Integer?

4) What would be the result of the equation 5 / 2 if assigned to an Integer?

5) How do the functions Int() and Fix() differ in their results?

38

4 Introduction to the C Runtime Library

One of the original motivations for creating FreeBasic was to provide an easy-to-
use wrapper for the C Runtime Library according to Andre Victor, the language creator.
FreeBasic is as advanced as it is today because many of the functions are wrappers for
the runtime functions, which simplified the creation of the language.

Since FreeBasic uses the C runtime library, you can use it as well in your programs,
and there are a number of very useful conversion functions available. The function
definitions are contained in the header file crt.bi, and you gain access to those functions
by using the #Include directive.

Caution Not all the functions listed in the various bi files in the crt folder
have been implemented in FreeBasic. If you get an error similar to the following
[path/filename].o:fake:(.text+0x16c): undefined reference to `rint', where path/filename is your
program's path and filename, then the function you are trying to use is not supported.
This is a linker error and indicates that the linker was not able to find the referenced
function. There are also a number of functions and structures that will only work in
Windows and some that are GNU Extensions and will only work on Linux.

The #Include Directive

The syntax for the #Include directive is #Include [Once] “filename.ext”.
Remember that a compiler directive instructs the compiler to do something, and in his
case, it instructs the compiler to include the file “filename.ext” when compiling. When the
compiler reads this directive, it stops reading the current file and starts reading the
included file. If the included file also has an #Include directive, then that file is read in as
well. You can have up to 16 nested includes per program. To use the runtime conversion
functions in your own program you would add #Include Once “crt.bi” at the top of
your program.

The file extension bi stands for “basic include” and is usually declaration
statements and/or subroutines and functions. The crt.bi file is located in the inc folder of
your FreeBasic installation. If a bi file is not located in the folder where the program is
being compiled, the compiler will look in the inc folder for the file. If it can’t find the file, it
will issue an error. You can also include a path with the filename if you keep your include
files in a common folder besides the inc folder.

If you look at the contents of crt.bi you see that the file simply includes other files
and references the library that contains the actual function code.

1

2

3

4

5

6

7

8

#ifndef __CRT_BI__

#define __CRT_BI__

#ifdef __FB_WIN32__

inclib "msvcrt"

#endif

#include once "crt/string.bi"

 39

9

10

11

12

13

14

15

16

17

#include once "crt/math.bi"

#include once "crt/time.bi"

#include once "crt/wchar.bi"

#include once "crt/stdlib.bi"

#include once "crt/stdio.bi"

#include once "crt/io.bi"

#include once "crt/errno.bi"

#endif ' __CRT_BI__

Listing 4.1: crt.bi

Analysis: Crt.bi contains a number of compiler directives, the statements that start
with the # character to control the compilation process. In line the directive #ifndef
means “if not defined”. If the symbol __CRT_BI__ has not already been defined, then line
2 will define the symbol. The #ifdef directive in line 4 means “if defined”. If the compiler
is running on a Win32 machine, the symbol __FB_WIN32__ will be defined which will
include the library "msvcrt" on line 5 with the #inclib directive which means “include
library”. The #endif on line 6 closes the opening #ifdef on line 4. Under Windows,
FreeBasic uses the Microsoft Runtime which is contained in the dynamic link library (DLL)
msvcrt.dll.

Line 8 through 15 include each of the individual declaration files that make up the
C runtime library. The “#include once” directive ensures that the individual include files
are only added once, even if another module includes them. The #endif on line 17 is
used to close the #ifndef on line 1.

Notice that the #Include directive use the Once modifier which tells the compiler
that this file should only be loaded once, even if a subsequent file uses the same
#Include. This is to prevent duplicate definition errors. It is always good practice to use
the Once modifier in your own includes.

Notice that the different files being included are located in the inc/crt folder. This is
an example of setting the path for the #Include if they should be in a different folder.
Many of the third-party library bi files are in their own subfolders, just to keep things a bit
more organized. The conversion functions we will be examining in this chapter are
contained the file crt/math.bi.

The #Inclib directive above the include list tells the compiler what library contains the
functions. Library files are compiled subroutines, functions and symbols that define the
functionality of the library. Lib files located in the lib folder of your FreeBasic installation.
They are usually named filename.a for static libraries and filename.dll.a for dynamic
link libraries. If you look in the lib folder you will also see some filename.o files. These
are object files. Object files contain pre-parsed code that can be linked to an executable
file or to a library file.

Caution If you open one of the bi files in the inc folder, which you may need to do
from time to time to see what parameters a function requires or to see the return type of

40

a function, be sure not to change anything in the file. You should always open the files in
read-only mode if your editor provides that functionality.

The Declaration Statement

If you look at math.bi you will see a number of Declaration statements. A
declaration statement is a function prototype that tells the compiler that there is a
function definition somewhere in the program code, or in a library or an external dll. This
forward reference is used so that the compiler won’t complain if the function or sub is
called before it finds the actual code for the function. Once you understand how to
interpret a declaration statement, you will be able to use any function in the runtime
library.

To understand the components of a declaration statement, here is the declaration
statement for the ceil function in math.bi. The ceil function rounds a decimal value up to
the nearest integer. That is, 1.5 would become 2.

Declare function ceil cdecl Alias "ceil" (byval as double) as double

You can break this declare down into the following functional sections.

• Declare: This is the keyword for a declare statement.

• Function: This can either be Function, to indicate that this procedure returns a
value, or Sub, which indicates that the procedure does not return a value.

• Ceil: This is the name of the function and the name that you would use in your
code. Do not use the name after Alias.

• Cdecl: This is the function's method of passing arguments. When calling an
external function, parameters must be pushed on the stack in the correct order so
that the function can pop the parameters off the stack correctly. Cdecl stands for C
Declare, and passes the arguments from right to left using the C convention of
parameter passing. The Pascal calling convention pushes arguments from left to
right and is used when calling functions created in the Pascal language. The
Stdcall calling convention pushes arguments from right to left and is used in Basic
libraries and Windows API.

• Alias: This is an alternate name that is used by the linker when your code is linked
to other languages. You use an alias in case there is a function in the target
language that has the same name as your function.

• (): The values inside the parenthesis are the parameters that the function or sub
expects. Ceil expects one parameter, a double-type value. If the function expects
multiple parameters, then commas will separate them. A parameter can be any of
the FreeBasic data types or a composite type. Many of the runtime functions
require pointers to other data types or data structures.

• ByVal: The byval (by value) keyword indicates that the value being passed to the
function is a copy of the data, and not the actual data itself. This is to prevent
accidentally changing the actual data within a function. You can also use ByRef
(by reference) which passes the address of the data to the function, and any
changes in the parameter are reflected in the actual data. ByVal is the default
behavior in current versions of the compiler.

 41

• As [data type]: The As keyword after the parameter list indicates the return type
of the function. Subs do not have a return type so there isn’t an As clause after the
parameter list.

Notice that the ceil function returns a double and not an integer, even though the
conversion function rounds off the decimal portion. This is to prevent integer overflow for
very large numbers. Even though ceil, and the other runtime conversion functions return
a double you can implicitly convert them to integers by simply assigning the return to an
integer variable or using the Cast function. Be sure to use an integer data type with a
large enough range for the result.

To use Ceil in your program you would write myDouble = Ceil(aDouble) or myInt =
Ceil(aDouble). All declaration statements follow the same pattern as Ceil.

DLLs created with Visual Basic 6tm and below are COM objects and not standard
DLLs. In order to use VB6 DLLs with FreeBasic you will need to create a COM interface to
access the DLL functions. Creating a COM interface is a complicated topic and is beyond
the scope of this book.

Runtime Conversion Functions

Table 5.1 lists some of the more useful conversion routines contained within the
runtime library along with he syntax and some comments about the function.

Function Syntax Comment

Ceil B = Ceil(double-type
expression)

Ceil returns the nearest
integer greater than
expression.

Floor B = Floor(double-type
expression)

Floor returns the nearest
integer less than expression.

Modf B = Modf(double-type
expression, double-type

pointer)

Modf returns the fractions
part of expression and the
integer part of expression in
the double-type pointer. The
integer part of expression is
rounded towards zero.

Table 4.1: Runtime Conversion Functions

It would require another book to examine all the functions in the runtime library. The
runtime functions presented in this book were selected because of their usefulness and
to supplement FreeBasic’s built-in functions.

Modf deserves special mention. A function can only return a single value, the value
defined in the As clause after the parameter list. This does not mean however that you
cannot return more than one value from a function. Any additional values a function
returns must be returned through the parameter list. One way to do this is to use the
Byref keyword on parameters. Any changes made to a byref parameter changes the
actual data. However, you cannot use byref on external libraries, due to differences in
42

calling procedures, so pointers are used instead. There are two ways to pass pointer data
to a function; by explicitly declaring a pointer data type which you will see in the chapter
on pointers, or by using the AddressOf operator which is explained here.

The AddressOf Operator @

When the compiler creates a variable, it allocates a portion of memory equal to the
size of the data type. For an integer it would allocate 4 bytes and for a double it would
allocate 8 bytes. Each memory location has an address associated with it so that the CPU
can move data into and out of the memory location. When the compiler allocates the
memory, the operating system returns an address for the memory location so that the
compiler can access that location. When you are working with variables you are actually
working with an addressable memory location in the computer. You don't have to worry
about the address since the compiler handles all those details for you; you can just use
the variable in your program.

However, when you need to call a function like Modf that requires a pointer to a
variable, then you need to know the address of the variable so you can pass it to the
function. Why can't you just use the variable name, since it is an alias for the memory
location? The answer is in the declaration of Modf shown in listing 5.3.

1 declare function modf cdecl alias "modf" (byval as double, byval as double ptr) as double

Listing 4.2: Modf Declaration

Notice that the second parameter is defined as byval and the data type is a pointer
(ptr) to a double-type variable. Remember that byval means “make a copy of the
contents of the parameter and use it in the function.” If you were to simply use the
variable name, you would be passing the contents of the memory location, whatever is in
the variable,and not its address.

When you use a regular variable in your program, you are working with the actual
data in the memory location associated with the variable. That is, a variable = data. If
you define myInt as an integer and set it equal to 5, when you print myInt to the screen
you will see 5. The pointer data type is unique in that what it contains isn't data, that is a
value like 134, rather it contains the address of a memory location. A pointer = memory
address. If you were to print a pointer to the screen you would see a number that doesn't
make much sense, since what you are looking at isn't the data in the memory location,
but the address of the data in memory.

When you first create a pointer, it doesn't point to anything. This is called a NULL
pointer. There are a number of ways to initialize the pointer, but one method is to use the
AddressOf operator. If you create a pointer variable such as myIntPtr you could initialize
that pointer with code like myIntPtr = @myInt. The @ is the AddressOf operator, and
this code snippet sets myIntPtr to the address of myInt. In other words, an initialized
pointer variable and the AddressOf operator both return the same value, a memory
address.

We can use this concept in the Modf function. Rather than creating a pointer
variable, we can create a double-type variable and then use this variable with the
AddressOf operator for the return parameter. Remember that you were able to use
expressions with the built-in numeric conversion functions. Using the AddressOf operator
with a variable is an expression which will be evaluated and the result, the variable
address, will be passed along to the function.

 43

The following short program illustrates this concept.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

'Need to include the runtime library

#include "crt.bi"

'Set up some variables

Dim As Double myDouble, FracPart, IntPart

'Set the value we want to convert

myDouble = 12.56

'Call the function. Notice that we are using the addressof

'operator @ on IntPart.

FracPart = modf(myDouble, @IntPart)

'Get the result.

Print "myDouble = ";myDouble

Print "Fractional part:";FracPart

Print "Integer part:";IntPart

Sleep

End

Listing 4.3: addressof.bas

Analysis: In line 1 the crt.bi is included in this program so that all the supported
functions will be available to the program. In line 5 all of the working variables are
declared. In line 8, the variable to be operated on is set to a decimal value. The Modf
function is called in line 11 using the AddressOf operator to retrieve the integer portion of
the return value. The fractional portion of the return value is loaded into the FracPart
variable. Line 13 through 15 print out the values returned from the function. The program
is closed in the usual way in lines 17 and 18.

In line 5 we dimension the variables we will use: myDouble is the value we want to
convert, FracPart is the value returned by the function and IntPart is the return value that
will be passed through the second parameter, the pointer. Notice in line 11 we are using
the AddressOf operator in conjunction with our regular double-type variable.

Here is the output of the program.

myDouble = 12.56

Fractional part: 0.560000000000001

Integer part: 12

Output 4.1: addressof.bas

The return value of the function, .56, is the fractional part and the integer part 12,
is the value returned through the parameter. The series of zeros ending in a 1 after the

44

.56 is the result of the precision conversion you will get with a double value. Remember
in the previous sections it was mentioned that double and single data types are prone to
rounding errors. Here you see why this is true.

Caution When you are dealing with a pointer parameter, you must be sure to pass
the correct data type to the parameter. In the case of Modf, it is expecting a double-type
pointer which is 8 bytes. If you pass the incorrect pointer type to a function, it may not do
anything at all, or it may try to write to 8 bytes of memory. If the function tries to write to
more memory than has been allocated you will see the infamous General Protection Fault
message and your program will be shut down. Always use the proper pointer type with
pointer parameters. General Protection Fault is a Windows term and is equivalent to a
Segmentation Fault on Linux.

Testing the Runtime Conversion Functions

As you did with the other conversion functions, you should test these functions
with both positive and negative numbers to see how they behave.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

'Need to include the runtime library

#include "crt.bi"

'Set up some variables

Dim As Double myDouble = 12.56, myDouble2 = ­12.56

'Show the various conversion functions with

'positive and negative numbers.

Print "Ceil with";myDouble;" returns ";Ceil(myDouble)

Print "Ceil with ";myDouble2;" returns ";Ceil(myDouble2)

Print

Print "Floor with";myDouble;" returns ";Floor(myDouble)

Print "Floor with ";myDouble2;" returns ";Floor(myDouble2)

Print

'Wait for a keypress

Sleep

End

Listing 4.4: crtfunc.bas

Analysis: Since these are C runtime functions, the crt.bi is included in line 2. Line 5
shows the declaration of the working variables in the program, once again using the
alternate Dim syntax. Lines 9 through 14 print out the return values of the functions with
both positive and negative numbers. Lines 17 and 18 close the program.

 45

Line 2 in the program includes the crt.bi which is required for using any of the
runtime functions. In line 5 the two working double-type variables are dimensioned and
initialized. As you can see, calling the runtime functions is exactly the same as calling
any of the FreeBasic built-in functions. Running the program will produce the following
output.

Ceil with 12.56 returns 13

Ceil with ­12.56 returns ­12

Floor with 12.56 returns 12

Floor with ­12.56 returns ­13

Output 4.2: crtfunc.bas

As you can see in the output, Ceil returns the nearest integer greater than the
value. 13 is greater than 12 and -12 is less negative than -12.56. Floor does just the
opposite; it returns the nearest integer less than the value. 12 is less than 12.56 and -13
is more negative than -12.56.

A Look Ahead

Normally when you use numbers in your program, you are going to do some sort of
calculation with them. In the next chapter you will see FreeBasic's arithmetic operators,
learn about operator precedence and explore the bits that make up a number.

46

Exercises

1) What is the extension of files that normally contain function declarations for
libraries?

2) What is the difference between the Ceil() and Floor() functions in the C runtime
library?

3) What compiler directive is used to add additional files before compilation?

4) What is a common cause of a Segmentation Fault or General Protection Fault?

 47

5 Arithmetic Operators

Arithmetic Operators

The Table 6.1 lists all the arithmetic operators in FreeBasic. In the table below, the
operators will work on two or more expressions, where expression is a number, variable
or another expression. The square brackets in the syntax column indicate optional
additional expressions.

Function Syntax Comment

+ (Addition) B = expression +
expression [+ expression…]

Returns the sum of two or
more expressions.
Expression can be a
number, variable or another
expression.

- (Subtraction) B = expression – expression
[- expression…]

Returns the difference
between two or more
expressions.

* (Multiplication) B = expression * expression
[* expression…]

Returns the product of two
or more expressions.

/ (Division) B = expression / expression
[/ expression…]

Returns the division of two
or more expression. The
result implicitly converted to
the target data type. That is,
if B is an integer, the result
will be rounded, if B is a
double or single, the result
will be a decimal number.

Note: If the second
expression evaluates to zero
(0), then a runtime error will
occur.

\ (Integer Division) B = expression \ expression
[\ expression…]

Returns the integer result of
division of two or more
expressions. The result is
implicitly converted to an
integer.

Note: If the second
expression evaluates to zero
(0), then a runtime error will
occur.

^ (Exponentiation) B = expression^value Returns the result of raising
expression to the power of
value. That is 2^2 = 2*2.

MOD (Modulo) B = expression MOD Returns the remainder of
48

Function Syntax Comment

expression the implicit division of the
expressions as an integer
result. If expression is a
decimal value, expression is
rounded before the division.

- (Negation) B = - expression Returns the negated value
of expression. This is the
same as multiplying by –1. If
expression is positive, B will
negative. If expression is
negative, B will positive.

() (Parenthesis) B = expression operator
(expression [operator

expression [(…])

Forces evaluation of
expression. Parenthesis can
be nested, but must be
closed properly or a compile
error will occur.

Table 5.1: Arithmetic Operators

You should be familiar with most of these operators from math class. Integer
division is used when you are not concerned about the remainder of the division process.
The Mod operator has several uses including executing some code only at certain times,
and for creating wrap-around functions such as are likely to occur when a sprite reaches
the edge of the screen and needs to wrap around to the other side.

When using these operators together in single statement, you must b aware of
how FreeBasic evaluates the expression. For example, does 5 + 6 * 3 equal 33 or does it
equal 23? FreeBasic evaluates expressions based on precedence rules, that is, rules that
describe what gets evaluated when. Table 6.2 lists the precedence rules for the
arithmetic operators. The order of precedence is the same order as the listing; that is the
top row has the highest precedence, while lower rows have lower precedence.

Operator

() (Parenthesis)

^ (Exponentiation)

- (Negation)

*, / (Multiplication and division)

\ (Integer division)

MOD (Modulus)

SHL, SHR (Shift bit left and shift bit right)

+, - (Addition and subtraction)

Table 5.2: Precedence of Arithmetic Operators

 49

The SHL and SHR operators will be discussed in the next section, Bitwise
Operators. They are included here to show where they fall in the precedence rules.

Looking at the table and the equation 5 + 6 * 3 you can see that this will evaluate
to 23 not 33, since multiplication has a higher precedence then addition. The compiler
will read the expression from left to right, pushing values onto an internal stack until it
can resolve part or all of the equation. For this equation 5 will be read and pushed, then
the + operator will be read and pushed onto the stack. Since the + operator requires two
operands, the compiler will read the next element of the expression which will be the *
operator. This operator also requires two operands, so * will be pushed onto the stack and
the 3 will be read. Since * takes priority over +, the 6 and 3 will be multiplied, and that
value will be stored on the stack. At this point there is a 5, + and 18 on the stack. Since
there is only one operator left and two operands, the 5 and 18 will be added together to
make 23, which will be returned as the result of the expression.

If you wanted to make sure that 5 + 6 gets evaluated first, then you would use
parenthesis to force the evaluation. You would write the parenthesized expression as (5 +
6) * 3. Since the parenthesis have the highest precedence, the expression they contain
will be evaluated before the multiplication. The evaluation process here is the same as
the previous process. The (is treated as an operator and is pushed onto the stack. The 5,
+, and 6 are read followed by the). The) signals the end of the parenthesis operation, so
the 5 and 6 are added together and pushed onto the stack. The * is read along with the 3.
The stack at this point contains an 11, * and 3. The 11 and 3 are multiplied together and
33 is returned as the result of the evaluation.

You can also embed parenthesis within parenthesis. Each time the compiler
encounters a (, it begins a new parenthesis operation. When it encounters a), the last (is
used to evaluate the items contained within the (and) and that result is either placed on
the stack for further evaluation or returned as a result. Each (must be match to a) or a
compiler error will occur.

The following program demonstrates both implicit evaluation and forced
evaluation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Option Explicit

Dim As Integer myInt

'Let compiler evaluate expression according to precedence

myInt = 5 + 6 * 3

Print "Expression 5 + 6 * 3 = ";myInt

'Force evaluation

myInt = (5 + 6) * 3

Print "Expression (5 + 6) * 3 = ";myInt

'Wait for keypress

Sleep

End

Listing 5.1: precedence.bas

50

Analysis: As always we open the program with Option Explicit in line 1 and declare
the working variables in line 3. In line 6 the compiler evaluates the math expression
according to precedence rules and stores the result in myInt, which is printed to the
console window in line 7. In line 10, parenthesis are used to force the evaluation of the
expression which is printed to the console screen in line 11. Lines 14 and 15 close the
program in the usual way.

As you can see from the output below, using parenthesis allows you to control the
evaluation of the expression.

Expression 5 + 6 * 3 = 23

Expression (5 + 6) * 3 = 33

Output 5.1: precedence.bas

What about the case where tow operators are used that have the same
precedence level? How does FreeBasic evaluate the expression? To find out, run the
following program.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Option Explicit

Dim As Integer myInt

'Expression 1

myInt = 3 + 5 ­ 4

Print "Expression 1: 3 + 5 ­ 4 is";myInt

'Expression 2

myInt = 3 ­ 5 + 4

Print "Expression 2: 3 ­ 5 + 4 is";myInt

'Expression 3

myInt = 6 * 2 / 3

Print "Expression 3: 6 * 2 / 3 is";myInt

'Expression 4

myInt = 6 / 2 * 3

Print "Expression 4: 6 / 2 * 3 is";myInt

 51

26

27

Sleep

End

Listing 5.2: sameprecedence.bas

Analysis: In line 3 the working variable myInt is declared, since the program uses
the Option Explicit directive in line 1. In line 6 the expression has the + operator first and
the – second, while in line 11 the order has been reversed to test the evaluation order.
The results are printed in lines 8 and 13. Line 16 and 21 use the * and / operators on the
same manner to test the order of evaluation and the results are printed in lines 18 and
23.

Running the program produces the following result.

Expression 1: 3 + 5 ­ 4 is 4

Expression 2: 3 ­ 5 + 4 is 2

Expression 3: 6 * 2 / 3 is 4

Expression 4: 6 / 2 * 3 is 9

Output 5.2: Output of sameprecedence.bas

As you can see from the output each expression has been evaluated from left to
right. In expression 1, 3 + 5 is 8 and subtracting 4 equals 4. In expression 2, 3 – 5 is
equal to -2, and adding 4 equals 2. In expression 3, 6 * 2 is 12 and divide that by 3 and
you get 4. In expression 4, 6 /2 is 3 and multiplies by 3 results in 9. The program shows
that operators that have the same precedence level are evaluated from left to right.

This is the case where parenthesis are very helpful in ensuring that the evaluation
order is according to your program needs. When in doubt, always use parenthesis to
ensure that the result is what you want in your program.

Shortcut Arithmetic Operators

FreeBasic has a number of shortcut arithmetic operators similar to those found in
the C programming language. These operators have the same precedence as their single
counterparts. The following table lists the shortcut operators.

Operator Syntax Comment

+= B += expression Add B to expression and
assign to B.

-= B -= expression Subtract B to expression
and assign to B.

*= B *= expression Multiply B to expression and
assign to B.

/= B /= expression Divide B by expression and

52

Operator Syntax Comment

assign to B.

\= B \= expression Integer divide B by
expression and assign to B.

Table 5.3: Shortcut Arithmetic Operators

Using these operators will cut down on the typing you have to do, especially for
statements such as a = a + 1, which can be written as a += 1.

Binary Number System

Computers use the binary, or base 2, numbering system to represent data. Base 2
digits are the numbers 0 and 1. A single binary 1 or 0 is called a bit. Four bits is called a
nybble. Two nybbles, or 8 bits is called a byte and 2 bytes make up a word. The size of a
data type determines how many bits are available to represent a particular number. A
byte has 8 bits, a short has 16 bits, an integer has 32 bits and a longint has 64 bits.

You will notice that each data type is double the size of the previous data type.
This is because the binary system uses powers of 2 to represent data. 20 is 1. 21 is 2. 22 is
4. 23 is 8. 24 is 16, and so on. To find the value of a binary number, you start from the
right, which is position 0 and add the power of twos going left if there is a 1 in the bit
position. If a nybble is 1101, then the right-most position is 20, the next position left is
skipped since it has a zero, followed by 22 and finally 23. Resolving the power terms gives
you 1 + 4 + 8 which equals 13. The value ranges for the different data types is a direct
result of the number of bits in each data type.

Being able to manipulate individual bits, bytes and words has a number of uses.
For example, the messaging system of the Windows API use integers to store both the id
of a control and event the control received, as the following code snippet shows.

1

2

3

Case WM_COMMAND

 wmId = Loword(wParam)

 wmEvent = Hiword(wParam)

Listing 5.3: Snippet from Windows Message Loop

In this snippet the id of the control is stored in the low word of wParam, and the
event number is stored in the high word. Since a word is 2 bytes or 16 bits, you can store
65535 ids in a single word, using an unsigned data type, or 32767 ids for a signed data
type. This is a very efficient way to manage data in your program.

The Sign Bit

The sign bit, the leftmost bit, is used by the computer to determine if a signed data
type is negative or positive using the Two's Complement form of notation. To represent a
negative number, the positive value of the number is negated, that is all the 1's are
changed to 0 and the 0's are changed to 1's, and 1 is added to that result. For example,
binary 5 is 0000 0101. Negating all the bits results in 1111 1010. Adding 1 results in 1111
1011. Since the leftmost bit is 1, this is a negative number.

 53

We can confirm this by using the power of 2 notation which results in the following:
−128 (27) + 64 (26) + 32 (25) + 16 (24) + 8 (23) + 0 + 2 (21) + 1 (20) = - 5. Remember, if
a bit is zero, we add zero to the total. The following program shows the binary
representation of both positive 5 and negative five.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Option Explicit

Dim As Byte myByte

Dim As String myBits

myByte = 5

'Get the binary form of number

myBits = Bin(myByte)

'Append some leading zeros so print line up

myBits = String(8 ­ Len(myBits), "0") & myBits

'Print out nybbles with a space between so is is easier to read

Print "myByte =";myByte;" which is binary ";

Print Mid(myBits, 1, 4) & " " & Mid(myBits, 5, 4)

myByte = ­5

'Get the binary form of number

myBits = Bin(myByte)

'Append some leading zeros so print line up

myBits = String(8 ­ Len(myBits), "0") & myBits

'Print out nybbles with a space between so is is easier to read

Print "myByte =";myByte;" which is binary ";

Print Mid(myBits, 1, 4) & " " & Mid(myBits, 5, 4)

Sleep

End

Listing 5.4: signbit.bas

Analysis: Lines 3 and 4 declare the working variables, a byte that will represent the
actual number and a string that will represent the binary value. In line 6 the myByte is
set to 5. In line 8 the Bin function is used to return a string that represents the binary
value of 5. Since Bin does not return any leading 0's, the String function is used to pad
the string to a full 8 bits for display purposes.

The first parameter of the String function is the number of characters to add and
the second parameter is the character to use to pad the string. Since a byte is 8 bits
long, subtracting the length of myBits from 8 will give the number of 0's to add to the
string, if the length of myBits is less than 8. In line 12 the numeric value of myByte is
printed, which is 5. A semi-colon is added to the end of print statement so that Print will
not print out a carriage return.

In line 13 the binary string is printed in two groups of four, that is each nybble, to
make the display easier to read. The Mid function used in line 13 returns a portion of a

54

string. The first parameter of the Mid function is the string, the second is the start
position and the third parameter is the number of characters to copy. The first Mid
returns the first four characters, which is appended to a space using the & operator,
which in turn is appended to the last four characters.

Line 15 sets myByte to -5 and lines 17 through 22 format the output and display it
to the screen. The program is ended in the usual manner.

When you run the program the following output is displayed.

myByte = 5 which is binary 0000 0101

myByte =­5 which is binary 1111 1011

Output 5.3: Output of signbit.bas

You can see that the output for -5 matches the Two's Complement form. We can
confirm this by negating 1111 1011 which results in 0000 0100 and adding 1 which
results in 0000 0101, or positive 5.

Why is this important? Signed data types have a smaller range of values than
unsigned data types because a bit is being used to represent the sign of the number. If
you are needing to store a large number of data values, such as ids, in a byte or integer,
the number of possible values you can store depends on whether it is signed or
unsigned. If the number of values needed exceed the range of a signed data type, then
use an unsigned data type.

A Look Ahead

There are times when you need to manipulate individual bits and bytes of a
variable. FreeBasic has a rich set of bitwise operators and macros that you will see in the
next chapter.

 55

6 Bitwise Operators

FreeBasic includes a number of operators that manipulate the bits of a number.
The following table lists the bitwise operators in order of their precedence. That is, the
first row has the highest precedence while lower rows have lower precedence.

Operator Syntax Truth Table Comments

Not (Bitwise negation) B = NOT expression NOT 0 = 1
NOT 1 = 0

Inverts operand bit;
turns a 1 into 0 and a 0
into 1.

And (Bitwise
conjunction)

B = expression AND
expression

0 AND 0 = 0
1 AND 0 = 0
0 AND 1 = 0
1 AND 1 = 1

Result bit is 1 only if
both operand bits are 1.

Or (Bitwise
disjunction)

B = expression OR
expression

0 OR 0 = 0
1 OR 0 = 1
0 OR 1 = 1
1 OR 1 = 1

Result bit is 1 if either
or both operand bits is
1.

Xor (Bitwise
exclusion)

B = expression XOR
expression

0 XOR 0 = 0
1 XOR 0 = 1
0 XOR 1 = 1
1 XOR 1 = 0

Result bit is 1 if operand
bits are different.

Eqv (Bitwise
equivalence)

B = expression EQV
expression

0 EQV 0 = 1
1 EQV 0 = 0
0 EQV 1 = 0
1 EQV 1 = 1

Result bit is 1 if both
operand bits are 0 or 1.

Imp (Bitwise
implication)

B = expression IMP
expression

0 IMP 0 = 1
1 IMP 0 = 0
0 IMP 1 = 1
1 IMP 1 = 1

Result bit is 0 if first bit
is 1 and second bit is 0,
otherwise result is 1.

Table 6.1: Bitwise Operators

The truth table column indicates the operation on the individual bits. The order of
the bits are not important except for the IMP operator which tests the bits of the second
operand using the bits from the first operand.

The NOT Operator

You saw the NOT operator at work in the two's complement section. The following
program performs the same two's complement operation.

1

2

3

4

5

6

Option Explicit

Dim As Byte myByte = 5

'5 in decimal and binary

Print "myByte:";myByte," Binary: ";Bin(myByte)

56

7

8

9

10

11

12

13

14

15

16

17

'Apply NOT operator

myByte = Not myByte

'Value after NOT operation

Print "NOT myByte: ";myByte," Binary: ";Bin(myByte)

'Add 1 after NOT operation

myByte = myByte + 1

'Print result = ­5 in decimal and binary

Print "myByte + 1: ";myByte," Binary: ";Bin(myByte)

Sleep

End

Listing 6.1: not.bas

Analysis: In line 3 the working variable myByte is declared and initialized using the
alternate format of the Dim statement. Line 6 prints out the value of myByte in both
decimal and binary. In line 8 the NOT operator is used to negate all the bits in the integer.
The result of the operation is printed to the console window in line 10. In line 12, 1 is
added to the result as required by the two's complement method. The result of this
operation id printed in line 14. The program is closed in the usual way.

When the program is run, you should see the following output.

myByte: 5 Binary: 101

NOT myByte: ­6 Binary: 11111010

myByte + 1: ­5 Binary: 11111011

Output 6.1: Output of not.bas

 As you can see from the output, the final result of the program is -5 after applying
the twos complement method to myByte. The 1 in the leftmost position indicates that the
number is negative. Bin doesn't add the leading zeros in the first output line, but the
three digits shown are the rightmost three digits.

The AND Operator

The AND operator can be used to test if an individual bit is 1 or 0 by using a mask
value to test for the bit position as the following program illustrates.

1

2

3

4

5

6

Option Explicit

'Declare working variable and mask value

'The mask will test the 3rd bit position, i.e. 4

Dim As Byte myByte = 5, Mask = 4

 57

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

'Print decimal and binary values

Print "Testing 3rd bit position (from right)"

Print "myByte:";myByte," Binary: ";Bin(myByte)

Print "Mask: ";Mask," Binary: ";Bin(Mask)

'Check to see if 3rd bit is set

If (myByte And Mask) = 4 Then

 Print "3rd bit is 1"

Else

 Print "3rd bit is 0"

End If

Print

'The mask will test the 2nd bit position, i.e. 2

Mask = 2

'Print decimal and binary values

Print "Testing 2nd bit position (from right)"

Print "myByte:";myByte," Binary: ";Bin(myByte)

Print "Mask: ";Mask," Binary: ";Bin(Mask)

'Check to see if 2nd bit is set

If (myByte And Mask) = 4 Then

 Print "2nd bit is 1"

Else

 Print "2nd bit is 0"

End If

Sleep

End

Listing 6.2: and.bas

Analysis: In line 5 the working variables are declared and initialized. The first
section of the program is testing for the third bit position of myByte, which is bit 22, or
decimal 4. Lines 8 through 10 print out the heading, decimal and binary values for the
variables. The If statement in line 13 uses the AND operator to test for a 1 in the 3rd bit
position, and since binary 5 contains a one in this position, the program will execute the
code immediately following the Then keyword.

Line 21 sets the mask value to 2 to test for a 1 in the second bit position, which is
21 or 2. Line 23 through 25 print out the header, decimal and binary values of the
variables. :ine 28 uses the AND operator to test for a 1, and since binary 5 has a 0 in this
position, the program will execute the code immediately following hr Else keyword.

Running the program produces the following output.

58

Testing 3rd bit position (from right)

myByte: 5 Binary: 101

Mask: 4 Binary: 100

3rd bit is 1

Testing 2nd bit position (from right)

myByte: 5 Binary: 101

Mask: 2 Binary: 10

2nd bit is 0

Listing 6.3: Output of and.bas

Looking at the binary values you can see how the bits line up and how the AND
operator can test for individual bits. 5 in binary has a bit set in the 20 (1) and 22 (4)
position. Setting the mask value to 4 sets bit position 22 to 1 and all other bit positions to
0. The expression (myByte And Mask) will return an integer value that will contain the
AND values of the two operands. Since the mask has zeros in every position except for
the 22 position, all of the other bits will be masked out, that is 0, returning a 4. Since the
return value of 4 matches the target value 4, the code following the Then clause is
executed.

The second portion of the program test for the 21 position of myByte. Since this
position contains a 0 in myByte, the value returned from the expression (myByte And
Mask) does not match the target value, so the code following the Else clause if executed.

The OR Operator

You can use the OR operator to set multiple values in a single variable. The
Windows API uses this technique to set flags for objects such as the styles of a window.
The following program illustrates this concept.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Option Explicit

'Declare working variable

Dim As Byte myByte, Mask

'Set the flags in the byte

myByte = 2

myByte = myByte Or 4

'Print decimal and binary values

Print "myByte set to 2 and 4"

Print "myByte:";myByte," Binary: ";Bin(myByte)

Print

'Set the mask to 2

mask = 2

Print "Testing for 2"

'Check for 2 value

 59

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

If (myByte And Mask) = 2 Then

 Print "myByte contains 2"

Else

 Print "myByte doesn't contains 2"

End If

Print

'Set the mask value to 4

Mask = 4

'Print decimal and binary values

Print "Testing for 4"

If (myByte And Mask) = 4 Then

 Print "myByte contains 4"

Else

 Print "myByte doesn't contain 4"

End If

Print

'Set the mask value to 8

Mask = 8

'Print decimal and binary values

Print "Testing for 8"

If (myByte And Mask) = 8 Then

 Print "myByte contains 8"

Else

 Print "myByte doesn't contain 8"

End If

Sleep

End

Listing 6.4: or.bas

Analysis: Line 4 declares the working variables. In line 7, myByte is set to 2 and in
line 8, that value is combined with 4 using the OR operator. Lines 10 and 11 print out the
decimal and binary values of myByte. In line 14, the mask is set to 2 and in lines 18
through 22 the AND operator is used to test for 2 in myByte. Since myByte contains a 2,
the program will execute the code immediately following the Then clause. Lines 24
through 31 use the same procedure to test for the value of 4. Since myByte contains a 4,
the program will print out the text “myByte contains a 4”. In lines 34 through 41, myByte
is tested for 8, which is does not contains so the code in line 40 will be executed.

When you run the program, you should get the following output.

60

myByte set to 2 and 4

myByte: 6 Binary: 110

Testing for 2

myByte contains 2

Testing for 4

myByte contains 4

Testing for 8

myByte doesn't contain 8

Output 6.2: Output of or.bas

As you can see from the output, you can pack multiple values into a single
variable. The number of values a variable can contain depends on the size of data type
and the range of values. Using the OR and AND combination is a technique that you will
find in wide-spread use, especially in third-party libraries, as it provides an efficient way
to pass multiple data items using a single variable.

The XOR Operator

One of the more useful aspects of the XOR operator is to flip bits between two
states. XORing a value with 0 will return the original value, and XORing with a 1 returns
the opposite value. Suppose that you start with a 1 bit and XOR with a 0 bit. Since the
two inputs are different you will get a 1. If the start value is 0 and you XOR with a 0, then
both values are the same and you will get a 0. In both cases the output is the same as
the input. If you start with a 1 and XOR with a 1, you will get a 0 since both inputs are the
same. If you start with a 0 and XOR with a 1, you will get a 1 since the inputs are
different. Here the inputs have been flipped to the opposite values. You can use this
technique with a mask value, XORing once to get a new value, and then XORing again
with the same mask to get the original value.

One use of this technique is to display a sprite on the screen using XOR and then
erasing the sprite by using another XOR at the same location. The first XOR combines the
bits of the background with the sprite bits to display the image. Another XOR in the same
location flips the bits back to their original state, once again showing the background and
effectively erasing the sprite image.

XOR can also be used to swap the values of two variables as demonstrated in the
following program.

1

2

3

4

5

6

Option Explicit

Dim As Integer myInt1 = 5, myInt2 = 10

Print "myInt1 = ";myInt1;" myInt2 = ";myInt2

Print "Swapping values..."

 61

7

8

9

10

11

12

13

myInt1 = myInt1 Xor myInt2

myInt2 = myInt1 Xor myInt2

myInt1 = myInt1 Xor myInt2

Print "myInt1 = ";myInt1;" myInt2 = ";myInt2

Sleep

End

Listing 6.5: xor.bas

Analysis: In line 3 the working variables are declared and initialized. Line 5 prints
out the initial variable values. Lines 7 through 9 carry out the XOR operation. In line 7,
MyInt1 is XORed with myInt2 to get an intermediate value which is stored in myInt1. In
line 8, the XOR operation returns the original value of myInt1 which is stored in myInt2.
The third XOR operation in line 9 then returns the value of myInt2 from the intermediate
value that was stored in myInt1 in line 7. Line 10 prints out the swapped values and the
program is then closed in the usual way.

Running the program produces the following output.

myInt1 = 5 myInt2 = 10

Swapping values...

myInt1 = 10 myInt2 = 5

Output 6.3: Output of xor.bas

As you can see the program was able to swap the two values without using a
temporary variable because the XOR operator is able to flip the bits between two distinct
states.

The EQV Operator

The EQV operator isn't used much as a bitwise operator, but it can be used to see
if two expressions are equivalent as the following program demonstrates.

1

2

3

4

5

6

7

8

9

10

11

Option Explicit

#define False 0

#define True NOT False

Dim As Integer myInt1 = 4, myInt2 = 2

Print "myInt1 = ";myInt1;" myInt2 = ";myInt2

Print

'Both statements are true so are equivalent.

62

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

26

37

38

39

Print "Statement (myInt1 < 5) eqv (myInt2 > 1) ";

If (myInt1 < 5) Eqv (myInt2 > 1) = True Then

 Print "is equivalent."

Else

 Print "is not equivalent."

End If

Print

'Both statements are false so are equivalent.

Print "Statement (myInt1 > 5) eqv (myInt2 < 1) ";

If (myInt1 > 5) Eqv (myInt2 < 1) = True Then

 Print "is equivalent."

Else

 Print "is not equivalent."

End If

Print

'One is true, the other false so statement

'is not equivalent.

Print "Statement (myInt1 > 5) eqv (myInt2 < 1) ";

If (myInt1 > 3) Eqv (myInt2 < 1) = True Then

 Print "is equivalent."

Else

 Print "is not equivalent."

End If

Sleep

End

Listing 6.6: eqv.bas

Analysis: In lines 3 and 4, the values False and True are defined. FreeBasic uses -1
to indicate a True result from a logical operation such as that performed when executing
an If statement. Since False is defined as 0, NOT False flips all the bits to 1, including the
sign bit, making -1.

In line 6 the working variables are declared and initialized. Lines 12 through 18 test
the first expression. The If statement in line 13 will execute the first expression, (myInt1
< 5). Since 4 < 5 this will return True. The EQV operator has lower precedence then
(myInt2 > 1), so this will be evaluated, and since 2 > 1 then will also return true. This
leaves -1 EQV -1 to be evaluated. Since -1 is equivalent to -1, the whole statement is
True. In line 22, both of the expressions are False. 0 EQV 0 is True, so this statement is
also True and will print out the affirmative. In line 32, the first expression is True while the
second is False. Since -1 is not equivalent to 0, this statement will evaluate to False and
the negative will be printed.

When the program is run, you will see the following output.

 63

myInt1 = 4 myInt2 = 2

Statement (myInt1 < 5) eqv (myInt2 > 1) is equivalent.

Statement (myInt1 > 5) eqv (myInt2 < 1) is equivalent.

Statement (myInt1 > 5) eqv (myInt2 < 1) is not equivalent.

Listing 6.7: Output of eqv.bas

It is important to realize that you are not testing to see if the expressions are True
or False. You are only testing to see if the expressions are equivalent to each other. To put
it another way, you are testing to see if two assertions are equivalent to each other. For
example, suppose you have two characters in a game and you want to attack with both
characters, if they are at equivalent strength. You could build an expression similar to the
one in the listing and take action based on the equivalence of the two characters.

The IMP Operator

Like the EQV operator, IMP is rarely used as a bitwise operator. It is used in logic
programming to test whether assertion A implies assertion B. Looking at the truth table
we can see that a True assertion implies a True conclusion so True and True is also True. A
True assertion however cannot imply a False conclusion so True and False is False. A False
premise can imply any conclusion so False with any conclusion is always True. Unless you
are building an expert system or natural language interface, you will probably never need
to use this operator.

Caution Exercise caution when using bitwise operators with arithmetic operators,
as the result may not be what you expect. When used in logical expressions, such as in
an If statement, make sure the bitwise operators operate on either the True or False
values of complete expressions to avoid evaluation problems.

Shortcut Bitwise Operators

The bitwise operators, like the arithmetic operators, can be written in shorthand
form. The following table lists the shortcut versions of the bitwise operators.

Operator Syntax Comment

And= B And= C This is the same as B = B
And C.

Or= B Or= C This is the same as B = B Or
C.

Xor= B Xor= C This is the same as B = B
Xor C.

Eqv= B Eqv = C This is the same as B = B
Eqv C.

64

Operator Syntax Comment

Imp= B Imp= C This is the same as B = B
Imp C.

Table 6.2: Shortcut Bitwise Operators

The SHL and SHR Operators

SHL stands for shift left and SHR stands for shift right. As the names imply, these
operators shift the bits of a byte or integer-type variable either left or right. The following
table shows the syntax diagram of both operators.

Operator Syntax Comments

SHL (Shift bits left) B = variable SHL
number

Shifts the bits of variable left number of
places.

SHR (Shift bits right) B = variable SHR
number

Shifts the bits of variable right number of
places.

Table 6.3: SHL and SHR Operators

Shifting left is the same as multiplying by 2 and shifting right is the same as
dividing by 2. You can see this by looking at the binary representation of a number. Take
the byte value of 1 which is 0000 0001. The 1 is in the 20 position. 20 equals 1. Shifting
the bit left, makes 0000 0010, putting the 1 bit in the 21 position, which evaluates to 2.
This is the same as 1*2. Shifting left again puts the bit at the 22 position, 0000 0100
which evaluates to 4, or 2 *2. Shifting the bit right puts the 1 back in the 21 position,
0000 0010, which evaluates to 2, or 4/2. Shifting right again puts the 1 bit in the 20

position, 0000 0001, which is 1 or 2/2.

The shift operation can be used as a replacement for multiplication or division if
you are working with powers of 2, but it is primarily used to pack data items into
variables, or to retrieve data items from variables. You saw this demonstrated in the
MAKDWORD macro which was defined as #define MAKDWORD(x,y) (cint(x) shl 16 or
cint(y)).

In this macro, the value of x is converted to an integer, and then shifted left 16 bits
into the high word. An integer is 4 bytes and can be represented as 00000000 00000000
00000000 00000001 . Shifting 16 bits left makes 00000000 00000001 00000000
00000000. Remember that a word is two bytes, so the 1 has been shifted to the high
word of the integer. You can then use the Hiword function to retrieve this value.

The following program shows the SHL and SHR operators.

1

2

3

4

5

6

Option Explicit

Dim As Uinteger myInt = 1, i

'Multiply by powers of 2

Print "Shifting left..."

 65

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Print "myInt = ";myInt

For i = 1 To 8

 myInt = myInt Shl 1

 Print "myInt = ";myInt

Next

Print

'Divide by powers of 2

Print "Shifting right..."

Print "myInt = ";myInt

For i = 1 To 8

 myInt = myInt Shr 1

 Print "myInt = ";myInt

Next

Sleep

End

Listing 6.8: shlr.bas

Analysis: Line declares the working variables, myInt which will be he value that is
shifted, and i for use in the For-Next loop. Line 8 through 11 shift myInt left 16 times, 1 bit
position each time, and prints the result. Line 15 through 19 then shift the variable right
16 times and prints the result. The program is closed in the usual way.

Running the program produces the following output.

Shifting left...

myInt = 1

myInt = 2

myInt = 4

myInt = 8

myInt = 16

myInt = 32

myInt = 64

myInt = 128

myInt = 256

Shifting right...

myInt = 256

myInt = 128

myInt = 64

myInt = 32

66

myInt = 16

myInt = 8

myInt = 4

myInt = 2

myInt = 1

Output 6.4: Output of shlr.bas

As you can see from the output, shifting left multiplies the value by 2 and shifting
right divides the value by 2.

Bitwise Macros

FreeBasic has several built-in macros for retrieving and setting bit and byte data
from a variable. The following tables lists the macros, the syntax and their definitions.

Macro Syntax Definition

Hiword B = Hiword(variable) #define Hiword(x) (CUInt(x) shr 16)

Loword B = Loword(variable) #define Loword(x) (CUInt(x) and 65535)

Hibyte B = Hibyte(variable) #define Hibyte(x) ((CUint(x) and 65280)
shr 8)

Lobyte B = Lobyte(variable) #define Lobyte(x) (CUint(x) and 255)

Bit B = Bit(variable, bit_number
)

#define Bit(x, bit_number) (((x) and (1
shl (bit_number))) > 0)

Bitset B = Bitset(variable,
bit_number)

#define Bitset(x, bit_number) ((x) or (1
shl (bit_number)))

Bitreset B = Bitreset(variable,
bit_number)

#define Bitreset(x, bit_number) ((x) and
not (1 shl (bit_number)))

Table 6.4: Bitwise Macros

The Hiword macro returns the leftmost two bytes of an integer and the Loword
macro returns the the rightmost two bytes. The Hibyte macro returns the leftmost eight
bits of a an integer and the Lobyte returns the rightmost eight bits.

The Bit macro returns a -1 if a bit at position bit_number is a 1, otherwise it returns
a 0. The Bitset macro sets the bit at position bit_number to 1 and returns the number,
and the Bitreset macro sets the bit at position bit_number to 0 and returns the number.
The rightmost bit is bit 0 following the binary numbering scheme.

Caution Bitwise operators will only work correctly on byte and integer-type data. A
single or double-type variable that is passed to a bitwise operator will be implicitly
converted to an integer, which may result in precision loss.

 67

These macros are useful when working with third party libraries such as the
Windows API, where several pieces of information are stored in a single data type.

A Look Ahead

In addition to the arithmetic and bitwise operators, FreeBasic has a set of
mathematical functions which is the subject of the next chapter.

68

7 Mathematical Functions

FreeBasic has a number of mathematical functions which are listed in the following
table.

Function Syntax Comments

ABS (Absolute Value) B = Abs(expression) Returns the unsigned value of expression.
This is an overloaded function so
expression can resolve to an integer,
longint or double.

ACOS (ArcCosine) B =
Acos(expression)

Returns the ArcCosine of a double-type
expression in radians. Expression must be
in the range of -1 to 1.

ASIN (ArcSine) B = Asin(expression) Returns the ArcSine of a double-type
expression in radians. Expression must be
in the range of -1 to 1.

ATAN2 (ArcTangent of
Ratio)

B =
Atan2(expressionV,

expressionH)

Returns the ArcTangent of of ratio of
double-type expression1 / expression2 in
radians. ExpressionV is the vertical
component and expressionH is the
horizontal component, where both
expressions are double-type values.

ATAN (ArcTangent) B =
Atan(expression)

Returns the ArcTangent of a double-type
expression in radians. Expression must be
in the range of -Pi/2 to Pi/2.

COS (Cosine) B = Cos(expression) Returns the Cosine of a double-type
expression in radians. Expression must be
in the range of -1 to 1 and is the angle
measured in radians.

EXP (E Exponent) B = Exp(expression) Returns e (approx 2.716) raised to the
power of a double-type expression.

LOG (Logarithm) B = Log(expression) Returns the natural Logarithm (base e) of
a double-type expression.

SGN (Sign) B = Sgn(expression) Returns the sign of a double-type
expression. If expression is greater than 0
then Sgn returns a 1. If expression is 0,
then Sgn returns 0. If expression is less
than 0, then Sgn return -1.

SIN (Sine) B = Sin(expression) Returns the Sine of a double-type
expression in radians. Expression must be
in the range -1 to 1.

SQR (Square Root) B = Sqr(expression) Returns the square root of a double-type

 69

Function Syntax Comments

expression. Expression must be greater
than or equal to 0.

TAN (Tangent) B = Tan(expression) Returns the Tangent of a double-type
expression in radians. Expression is the
angle measured in radians.

Table 7.1: Mathematical Functions

Trigonometric Functions

All of the trigonometric functions return the measured angle in radians not
degrees. To convert degrees to radians you would use the formula radian = degree * PI /
180. To convert radians to degrees you would use the formula degree = radian * 180 / PI.
PI is the ratio of the circumference of a circle to its diameter and can be calculated using
the Atn function with the formula PI = 4 * Atn(1.0). The following short program converts
an angle in degrees to an angle in radians.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Option Explicit

'Calc the value of Pi

Const Pi = 4 * Atn(1)

Dim As Double deg, rad

'Get the angle in degrees

Input "Enter an angle in degrees";deg

'Calculate the radian

rad = deg * Pi / 180

'Print out the values

Print

Print "Pi:";Pi

Print "Degrees:";deg

Print "Radians:";rad

Sleep

End

Listing 7.1: degrad.bas

Analysis: In line 4 a symbolic constant is declared for PI using the Atn function. Line
6 declares the working variables. In line 9, the user inputs the degrees to convert to
radians. Line 12 calculates the radian angle based on the conversion formula listed
above. Lines 15 through 18 print out the various values. The program is then ended in
the usual way.

70

Running the program will produce the following output.

Enter an angle in degrees? 90

Pi: 3.14159265358979

Degrees: 90

Radians: 1.5707963267949

Output 7.1: Output of degrad.bas

There are a number of on-line tutorials that you can access to brush up on your trig. A
quick Google search on the term trigonometry brought up hundreds of sites that offer
basic to advanced tutorials on the various trig functions that FreeBasic supports. Randy
Keeling has written two basic tutorials on trigonometry in the Community Tutorials
section of the FreeBasic wiki. At the time of this writing, the wiki was located at
http://www.freebasic.net/wiki/wikka.php?wakka=FBWiki.

Absolute Value and the Sgn Function

You would use the Abs function when you are interested in the absolute magnitude
of a number. The absolute value of a number is the distance that number is from zero on
the real number line. 3 is three units from 0 so its absolute magnitude is 3. -3 is also
three units from 0 so its absolute magnitude is also 3.

The Sgn function, called the signum function in math, is related to the Abs function
since you can express the absolute value of a number by using the Sgn function. Sgn
returns -1 for a negative number, 0 for 0 and 1 for a positive number. To calculate the
absolute value of a number you would use the formula |a| = a * Sgn(a), where the
vertical lines indicate absolute value. If we replace a with -3 in the formula, you get |-3| =
-3 * Sgn(-3), or |-3| = -3 * -1. Since multiplying a negative with a negative returns a
positive, the result is |-3| = 3. Replacing a with 3, the formula would evaluate to |3| = 3 *
1, or |3| = 3.

One use of the Sgn function in programming is determining the relative positions
of two points on the screen. If you have two points, A(5, 6,) and B(3, 4), where the first
number is the row and the second number is the column, you can determine the relative
position by moving the origin to point A and looking at the sign of point B. The origin (0,
0) of the screen is located in the upper left corner. To move the origin to point A you need
to subtract 5 from the row and 6 from the column of each point giving A(0, 0) and B(-2,
-2). You can now use the Sgn function on the row and column components of B.

● If Sgn(B.row) = -1, then the row is above A.

● If Sgn(B.row) = 0, then the row is in the same row as A.

● If Sgn(B.row) = 1 then the row is below A.

● If Sgn(B.column) = -1 then the column is to the left of A.

● If Sgn(B.column) = 0 then the column is in the same column as A.

● If Sgn(B.column) = -1 then the column is to the right of A.

 71

Since B is located at row -2 and column -2 after adjusting the origin, the Sgn
function will return -1 for the row and -1 for the column. This puts point B above and to
the left of of point A.

Logarithms

Logarithmshave a wide range of uses in mathematics, physics and biology. For
example, the decay rate of radioactive particles is logarithmic in nature. Logarithms are a
way of expressing exponentiation. For the following formula Ab = x can be expressed as
Log(x) = b where the base of the log is a. The two most commonly used logarithms are
the natural log, which uses e (2.7182818284590452354...) as the base, and log base 10
or the common log. The Log function in FreeBasic uses the natural log, but any log base
can be expressed by the formula logarithm = Log(number) / Log(base)2.

One property of logarithms is that they can be used to multiply or divide two
numbers together. This was a common use of logarithms before the invention of
calculators. The following program uses the logarithm method to multiply two numbers
together.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Option Explicit

Const base10 = Log(10)

Dim As Double l1, l2, lt, al

'Calculate the log of 2.5 for base 10

l1 = Log(2.5) / base10

'Calculate the log of 5.6 for base 10

l2 = Log(5.6) / base10

'Add the logarithms

lt = l1 + l2

'Get the antilog, which is our base (10)

'raised to the sum of the log values

al = 10^lt

'Print results

Print "2.5 * 5.6 = ";2.5 * 5.6

Print "Log method = ";al

Sleep

End

Listing 7.2: log.bas

2For an explanation of the natural log and e see http://www.physics.uoguelph.ca/tutorials/LOG/logbase.html.
72

Analysis: Line 3 defines a symbolic constant, base10, that will be the base of the
logarithm calculations. Using a constant in this manner reduces the number of
calculations the program must perform. Instead of using two Log(10) function calls, only
one is used in the constant definition. Line 5 declares the working variables, l1 an l2
which are the two Logarithms of the numbers 2.5 and 5.6 and the sum of the logs, lt. al
will be the antilog value.

Lines 8 and 10 calculate the base 10 log of the two numbers. In line 13 the
logs are added together. Line 17 calculates the antilog, which is the base, in this case 10,
raised to the power of the sum of the logs. Line 20 prints the result using the
multiplication operator, and line 21 prints the result using the log method.

The program is closed in the usual way in lines 23 and 24.

Running the program produces the following result.

2.5 * 5.6 = 14

Log method = 14

Output 7.2: Output of log.bas

As you can see from the output, adding the logarithms of the two numbers and
then calculating the antilog of the sum produces the same result as multiplying the two
numbers.

The C Runtime Library Math Constants and Functions

The C Runtime Library (CRT) has a number of math constants and functions that
you can use in your programs. To use these functions you would add the line #Include
Once “crt.bi” to your program. The following table lists the math constants available in
math.bi.

CRT Math Constants

Constants Value Comment

M_E 2.7182818284590452354 The base of natural
logarithms.

M_LOG2E 1.4426950408889634074 The logarithm to base 2 of
M_E.

M_LOG10E 0.43429448190325182765 The logarithm to base 10 of
M_E.

M_LN2 0.69314718055994530942 The natural logarithm of 2.

M_LN10 2.30258509299404568402 The natural logarithm of 10.

M_PI 3.14159265358979323846 Pi, which is the ratio of a

 73

Constants Value Comment

circle's circumference to its
diameter.

M_PI_2 1.57079632679489661923 Pi divided by two.

M_PI_4 0.78539816339744830962 Pi divided by four.

M_1_PI 0.31830988618379067154 The reciprocal of pi, that is
1/pi.

M_2_PI 0.63661977236758134308 Two times the reciprocal of
pi.

M_2_SQRTPI 1.12837916709551257390 Two times the reciprocal of
the square root of pi.

M_SQRT2 1.41421356237309504880 The square root of two.

M_SQRT1_2 0.70710678118654752440 The reciprocal of the square
root of two which is also the
square root of 1/2.

Table 7.2: CRT Math Constants

In the example programs the value of PI was calculated. However, as you can see,
the value of PI is available in the CRT, so it is much more efficient to use the defined
value M_PI in your programs, rather than making the compiler perform a calculation for
the value. The same reasoning applies to the base 10 logarithm calculation that was used
in log.bas. Instead of calculating the base 10 log you can use the constant value M_LN10.

The various versions of the PI constants are commonly used values in calculations
as are the versions of the square root of 2. The square root of 2, like PI, is an irrational
number and is the length of the hypotenuse of a right triangle with sides that have a unit
length of 1. The square root of 2 is related to PI with the formula sqrt(2)=2sin(PI/4). The
following program displays both the calculated value of the square root of 2 and the CRT
value for comparison.

1

2

3

4

5

6

7

8

9

10

11

12

Option Explicit

#Include Once "crt.bi"

Dim As Double sqr2

sqr2 = 2 * Sin(M_PI/4)

Print "Calculated Square root of 2:";sqr2

Print "CRT value:"; M_SQRT2

Sleep

74

13 End

Listing 7.3: sr2.bas

Analysis: Line 3 includes the CRT declaration file, crt.bi, which will enable the
program to use the math constants and functions. The #Include Once directive ensures
that the file is only included once in the program, even if other modules also include the
file. Line 5 declares the working variable which will hold the result of the calculation in
Line 7. Line 9 and 10 displays the calculated value as well as the CRT defined value for
comparison. The program is closed in the usual way.

When you run the program you should see the following output.

Calculated Square root of 2: 1.41421356237309

CRT value: 1.4142135623731

Output 7.3: Output of sr2.bas

As you can see from the output, the calculated value has a slightly higher precision
than the constant value, but the difference is too small to really matter in most cases. To
save the compiler a calculation, and thereby speeding up your program, use the defined
value in the CRT.

Selected CRT Math Functions

There are a number of math functions declared in the CRT. Table 8.3 list three of
the functions.

Function Syntax Comment

Hypot B = Hypot(x as double, y as
double)

Hypot returns the
hypotenuse of sides x and y.

Log10 B = Log10(x as double) Log10 returns the base 10
log of x.

Pow B = Pow(base as double,
power as double)

Pow returns base raised to
power.

Table 7.3: Selected CRT Math Functions

The log program in Listing 8.2 can be modified to use the CRT functions.

1

2

3

4

5

Option Explicit

#Include Once "crt.bi"

Dim As Double l1, l2, lt, al

 75

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

'Calculate the log of 2.5 for base 10

l1 = Log10(2.5)

'Calculate the log of 5.6 for base 10

l2 = Log10(5.6)

'Add the logarithms

lt = l1 + l2

'Get the antilog, which is our base (10)

'raised to the sum of the log values

al = Pow(10, lt)

'Print results

Print "2.5 * 5.6 = ";2.5 * 5.6

Print "Log method = ";al

Sleep

End

Listing 7.4: log2.bas

Analysis: Line 3 includes the crt.bi declaration file so that the runtime functions will
be available to the program. Line 5 declares the working variables as in the previous
program. In lines 8 and 10, the previous calculation has been replaced with the CRT
function log10. Line 13 adds the logarithms, which is the same as multiplying the two
numbers, and saves the result in the variable lt. In line 17 the Pow function is used rather
than the exponentiation operator to calculate the antilog. Lines 20 and 21 print out the
results for comparison. The program is closed in the usual way.

When you run the program you will see that the output is the same as in the
previous version.

2.5 * 5.6 = 14

Log method = 14

Output 7.4: Output of log2.bas

Using the CRT functions can make your program a bit more simple, and a bit less
error prone. Since FreeBasic uses the Microsoft runtime library the functions are stable
and reliable, and many include optimizations that make the functions perform better than
you could achieve by hand coding.

A Look Ahead

In addition to the standard numeric variables, FreeBasic also has the pointer data
type, which is the subject of the next chapter.

76

8 Pointer Data Type

The pointer data type is unique among the FreeBasic numeric data types. Instead
of containing data, like the other numeric types, a pointer contains the memory address
of data. On a 32-bit system, the pointer data type is 4 bytes. FreeBasic uses pointers for a
number of functions such as ImageCreate, and pointers are used heavily in external
libraries such as the Windows API. Pointers are also quite fast, since the compiler can
directly access the memory location that a pointer points to. A proper understanding of
pointers is essential to effective programming in FreeBasic.

For many beginning programmers, pointers seem like a strange and mysterious
beast. However, if you keep one rule in mind, you should not have any problems using
pointers in your program. The rule is very simple: a pointer contains an address, not data.
If you keep this simple rule in mind, you should have no problems using pointers.

Pointers and Memory

You can think of the memory in your computer as a set of post office boxes (P.O.
Box) at your local post office. When you go in to rent a P.O. Box, the clerk will give you a
number, such as 100. This is the address of your P.O. Box. You decide to write the number
down an a slip of paper and put it in your wallet. The next day you go to the post office
and pull out the slip of paper. You locate box 100 and look inside the box and find a nice
stack of junk mail. Of course, you want to toss the junk mail, but there isn't a trash can
handy, so you decide to just put the mail back in the box and toss it later. Working with
pointers in FreeBasic is very similar to using a P.O. Box.

When you declare a pointer, it isn't pointing to anything which is analogous to the
blank slip of paper. In order to use a pointer, it must be initialized to a memory address,
which is the same as writing down the number 100 on the slip of paper. Once you have
the address, find the right P.O. Box, you can dereference the pointer, open the mail box,
to add or retrieve data from the pointed-to memory location. As you can see there are
three basic steps to using pointers.

1. Declare a pointer variable.

2. Initialize the pointer to a memory address.

3. Dereference the pointer to manipulate the data at the pointed-to memory location.

This isn't really any different than using a standard variable, and you use pointers
in much the same way as standard variables. The only real difference between the two is
that in a standard variable, you can access the data directly, and with a pointer you must
dereference the pointer to interact with the data. The following program illustrates the
above steps.

1

2

3

4

5

6

7

Option Explicit

'Create a pointer ­ doesn't point to anything.

Dim myPointer As Integer Ptr

'Initialize the pointer to point to 1 integer

myPointer = Callocate(1, Sizeof(Integer))

 77

8

9

10

11

12

13

14

15

16

17

18

'Print the address

Print "Pointer address:";myPointer

'Add some meaningful data

*myPointer = 10

'Print the contents­will not be garbage

Print "Memory location contains:";*myPointer

'Deallocate the pointer

Deallocate myPointer

Sleep

End

Listing 8.1: basicpointer.bas

Analysis: In line 4 a pointer to an integer is created. The pointer doesn't point to a
memory location yet, and if you were to try and use this uninitialized pointer, you would
generate an error. Line 7 uses the Callocate function to set aside memory equal to the
size of an integer, that is 4 bytes, and returns the starting address of the memory
segment. The second parameter passed to Callocate is the size of the memory unit to
allocate. The first parameter is the number of units to allocate. In this program, one unit
of size integer is being allocated.

Now that myPointer has been initialized, you can use it. Line 9 prints out contents
of myPointer which illustrates that the variable contains a memory address and not data.
In line 11 data is added to the memory location using the indirection operator *. The
indirection operator tells the compiler you want to work with the data that myPointer is
pointing to, rather than the memory address contained in the variable. Line 13 prints out
the contents of the memory location which is now 10.

In line 15, the memory allocated with Callocate is freed using the Deallocate
procedure. The program is closed in the usual way.

Running the program should produce a result similar to the following output.

Pointer address:3089536

Memory location contains: 10

Output 8.1: Output of basicpointer.bas

The address printed on your computer will probably be different, since the
operating system allocates the memory used by Callocate.

When your program terminates, all memory that was allocated in the program is freed
and returned to the operating system. However, it is good practice to deallocate
memory when it is no longer needed, even if it isn't strictly necessary when a program
terminates. The better you manage your program's memory, the less chance of
problems you will have when running the program on different computer configurations.

78

Typed and Untyped Pointers

FreeBasic has two types of pointers, typed and untyped. The preceding program
declared a typed pointer, Dim myPointer as Integer Ptr, which tells the compiler that
this pointer will be used for integer data. Using typed pointers allows the compiler to do
type checking to make sure that you are not using the wrong type of data with the
pointer, and simplifies pointer arithmetic.

Untyped pointers are declared using the Any keyword: Dim myPointer as Any
Ptr Untyped pointers have no type checking and default to size of byte. Untyped pointers
are used in the C Runtime Library and many third party libraries, such as the Win32 API,
to accommodate the void pointer type in C. You should use typed pointers so that the
compiler can check the pointer assignments, unless working with libraries that require
the void pointer.

Pointer Operators

There are two pointer operators in FreeBasic; the indirection operator and the
addressof operator.

Operator Syntax Comment

* (Indirection)

[] (Index Access)

B = *myPointer

*myPointer = B

B = myPointer[index]

myPointer[index] = B

You can access the data in a
pointer memory location by
either using the indirection
operator or using index
access. The index format
uses the size of the data
type to determine the
proper indexing.

@ (AddressOf) myPointer = @myVar

myPointer = @mySub()

myPointer = @myFunction()

Returns the memory
address of a variable,
subroutine or function.

Table 8.1: Pointer Operators

You will notice that the addressof operator not only returns the memory address of
a variable, but it can also return the address of a subroutine or function. You would use
the address of a subroutine or function to create a callback function such as used in the
CRT function qsort. Callback functions will discussed later in this chapter.

Memory Functions

FreeBasic has a number of memory allocation functions that are used with
pointers, as shown in the following table.

Function Syntax Comment

Allocate myPointer =
Allocate(number_of_bytes)

Allocates number_of_bytes
and returns the memory

 79

Function Syntax Comment

address. If myPointer is 0,
the memory could not be
allocated. The allocated
memory segment is not
cleared and contains
undefined data.

Callocate myPointer =
Callocate(number_of_eleme

nts, size_of_elements)

Callocate allocates
number_of_elements that
have size_of_elements and
returns the memory
address. If the memory
could not be allocated,
Callocate will return 0. The
memory segment allocated
is cleared.

Deallocate Deallocate myPointer Frees the memory segment
pointed to by myPointer.

Reallocate myPointer =
Reallocate(pointer,
number_of_bytes)

Reallocate changes the size
of a memory segment
created with Allocate or
Callocate. If the new size is
larger than the existing
memory segment, the
contents of the memory
segment remained
unchanged. If the new size
is smaller, the contents of
the memory segment are
truncated. If pointer is 0,
Reallocate behaves just like
Allocate. A 0 is returned if
the memory segment
cannot be changed.

Table 8.2: FreeBasic Memory Functions

These functions are useful for creating a number of dynamic structures such as
linked lists, ragged or dynamic arrays and buffers used with third party libraries.

When using the Allocate function you must specify the storage size based on the
data type using the equation number_of_elements * Sizeof(datatype). To allocate
space for 10 integers your code would look like this: myPointer = Allocate(10 *
Sizeof(Integer)). An integer is 4 bytes so allocating 10 integers will set aside 40 bytes
of memory. Allocate does not clear the memory segment, so any data in the segment will
be random, meaningless data until it is initialized.

Callocate works in the same fashion, except that the calculation is done internally.
To allocate the same 10 integers using Callocate your code would look like this:
myPointer = Callocate(10, Sizeof(Integer)). Unlike Allocate, Callocate will clear
the memory segment.

80

Reallocate will change the size of an existing memory segment, making it larger or
smaller as needed. If the new segment is larger than the existing segment, then the data
in the existing segment will be preserved. If the new segment is smaller than the existing
segment, the data in the existing segment will be truncated. Reallocate does not clear
the added memory or change any existing data.

All of these functions will return a memory address if successful. If the functions
cannot allocate the memory segment, then a NULL pointer (0) is returned. You should
check the return value each time you use these functions to be sure that the memory
segment was successfully created. Trying to use a bad pointer will result in undesirable
behavior or system crashes.

There is no intrinsic method for determining the size of an allocation; you must
keep track of this information yourself.

Caution Be careful not to use the same pointer variable to allocate two or more
memory segments. Reusing a pointer without first deallocating the segment it points to
will result in the memory segment being lost causing a memory leak.

Pointer Arithmetic and Pointer Indexing

When you create a memory segment using the allocation functions, you will need a
way to access the data contained within the segment. In FreeBasic there are two
methods for accessing data in the segment; using the indirection operator with pointer
arithmetic, and pointer indexing.

Pointer arithmetic, as the name suggests, adds and subtracts values to a pointer to
access individual elements within a memory segment. When you create a typed pointer
such as Dim myPointer as Integer ptr, the compiler knows that the data being used
with this pointer is of size Integer or 4 bytes. The pointer, when initialized, points to the
first element of the segment. You can express this as *(myPtr + 0). To access the second
element, you need to add 1 to the pointer, which can be expressed as *(myPtr + 1).
Since the compiler knows that the pointer is an Integer pointer, adding 1 to the pointer
reference will actually increment the address contained in myPtr by 4, the size of an
Integer. This is why using typed pointers is preferable over untyped pointers. The
compiler does much of the work for you in accessing the data in the memory segment.

Notice that the construct is *(myPtr + 1) and not *myPtr + 1. The * operator has
higher precedence than +, so *myPtr + 1 will actually increment the contents myPtr
points to, and not the pointer address. *myPtr will be evaluated first, which returns the
contents of the memory location and then +1 will be evaluated, adding 1 to the memory
location. By wrapping myPtr + 1 within parenthesis, you force the compiler to evaluate
myPtr + 1 first, which increments the pointer address, and then the * is applied to return
the contents of the new address.

Pointer indexing works the same way as pointer arithmetic, but the details are
handled by the compiler. *(myPtr + 1) is equivalent to myPtr[1]. Again, since the
compiler knows that myPtr is an integer pointer, it can calculate the correct memory
offsets to return the proper values using the index. Which format you use if up to you, but
most programmers use the index method because of its simplicity.

The following program shows both methods of accessing a memory segment.

1 Option Explicit

 81

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Dim myPtr As Integer Ptr

Dim As Integer i

'Try and allocate space for 10 integers

myPtr = Callocate(10, Sizeof(Integer))

'Make sure the space was allocated

If myPtr = 0 Then

 Print "Could not allocate space for buffer."

 End 1

End If

'Load data into the buffer

Print "Loading data, print data using *..."

For i = 0 To 9

 *(myPtr + i) = i

 Print "Index:";i;" data:";*(myPtr + i)

Next

Print

'Print data from buffer

Print "Show data using indexing..."

For i = 0 To 9

 Print "Index:";i;" data:";myPtr[i]

Next

'Free the memory

Deallocate myPtr

Sleep

End

Listing 8.2: ptraccess.bas

Analysis: In lines 3 and 4 the working variables are declared. Space for 10 integers
is created in Line 7 using the Callocate function. Lines 10 through 13 check to make sure
that the memory was allocated. If it wasn't, the program ends. The End 1 terminates the
program with an exit code of 1. This is useful for instances where the program may be
run from a batch file and you want to make sure the program ran successfully. You can
check the exit code in the batch file and take the appropriate action.

Lines 17 through 20 load and print the memory segment with ten integers using
the indirection operator and pointer arithmetic. Lines 25 through 27 print out the values
using the index method. Notice that the index method is much more compact and easier
to read. In line 30 the buffer is deallocated, even though it isn't strictly necessary as the
program is terminating. Deallocating memory is a good habit to get into, even when it
may not be strictly necessary. The program is closed in the usual way.
82

When you run the program you should see the following output.

Loading data, print data using *...

Index: 0 data: 0

Index: 1 data: 1

Index: 2 data: 2

Index: 3 data: 3

Index: 4 data: 4

Index: 5 data: 5

Index: 6 data: 6

Index: 7 data: 7

Index: 8 data: 8

Index: 9 data: 9

Show data using indexing...

Index: 0 data: 0

Index: 1 data: 1

Index: 2 data: 2

Index: 3 data: 3

Index: 4 data: 4

Index: 5 data: 5

Index: 6 data: 6

Index: 7 data: 7

Index: 8 data: 8

Index: 9 data: 9

Output 8.2: Output of ptraccess.bas

As you can see from the output, both formats produce the same results, but the
index method is a lot easier to read and understand, and less error-prone than the
indirection method.

Pointer Functions

Freebasic has a set of pointer functions to complement the pointer operators. The
following table lists the pointer functions.

Function Syntax Comment

Cptr myPtr = Cptr(data_type,
expression)

Converts expression to a
data_type pointer.
Expression can be another

 83

Function Syntax Comment

pointer or an integer.

Peek B = Peek(data_type,
pointer)

Peek returns the contents of
memory location pointer to
by pointer. Data_type
specifies the type of
expected data.

Poke Poke data_type, pointer,
expression

Puts the value of expression
into the memory location
pointed to by pointer. The
data_type specifies the type
of data being placed into
the memory location.

Sadd myPtr =
Sadd(string_variable)

Returns the location in
memory where the string
data in a dynamic string is
located.

Strptr myPtr =
Strptr(string_variable)

The same as Sadd.

Procptr myPtr = Procptr(function) Returns the address of a
function. This works the
same way as the addressof
operator @.

Varptr myPtr = Varptr(variable) This function works the
same way as the addressof
operator @.

Table 8.3: Pointer Functions

The Sadd and Strptr functions will be discussed in the chapter on the string data
types. The Peek and Poke functions have been added for the purposes of supporting
legacy code. Procptr and Varptr both work just like the address of operator, but Proptr
only works on subroutines and functions and Varptr only works on variables. Cptr is useful
for casting an untyped pointer to a typed pointer, such as a return value from a third
party library.

Subroutine and Function Pointers

Subroutines and functions, like variables, reside in memory and have an address
associated with their entry point. You can use these addresses to create events in your
programs, to create pseudo-objects and are used in callback functions. You create a sub
or function pointer just like any other pointer except you declare your variable as a
pointer to a subroutine or function rather than as a pointer to a data type. Before using a
function pointer, it must be initialized to the address of a subroutine or function using
Procptr or @. Once initialized, you use the pointer in the same manner as calling the
original subroutine or function. The following program illustrates declaring an using a
function pointer.

84

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Option Explicit

'Declare our function to be used with pointer

Declare Function Power(number As Integer, pwr As Integer) As Integer

'Dim a function pointer

Dim FuncPtr As Function(x As Integer, y As Integer) As Integer

'Get the address of the function

FuncPtr = @Power

'Use the function pointer

Print "2 raised to the power of 4 is";FuncPtr(2, 4)

Sleep

End

'Write the function that will be called

Function Power(number As Integer, pwr As Integer) As Integer

 Return number^pwr

End Function

Listing 8.3: funcptr.bas

Analysis: Line 4 declares the function prototype that will be used with the function
pointer. Line 7 declares the function pointer using the the As Function syntax. Notice that
the Dim statement does not use the Ptr keyword; the compiler knows that this will be a
function pointer since it is declared using the As Function method. When declaring a
function pointer, the parameter list must match the number and type of parameters of
the pointed-to function, but as you can see, the names do not have to match. In fact, the
pointer can be declared as Dim FuncPtr As Function(As Integer, As Integer) As
Integer, without the parameter names. The only requirement is to make sure that the
type and number of parameters, and the return type, match the function declaration and
definition. Line 10 initializes the function pointer to the address of the function using the
address of operator @. You could use Procptr here as well. Line 13 uses the pointer to
call the function. The calling syntax is the same as using the function name: FuncPtr(2,4)
is equivalent to Power(2, 4). Lines 15 and 16 close the program in the usual way. Lines 19
through 21 define the actual Power function.

Running the program will produce the following result.

2 raised to the power of 4 is 16

Listing 8.4: Output of funcptr.bas

 85

While this example program may not seem to have any advantages over just
calling the function directly, you can use this method to call several functions using a
single function pointer. For example, if you were creating your own user interface, you
could implement events using a function pointer that called one of several different
subroutines depending on the object receiving the event. The only requirement would be
that each subroutine must contain the same number and type of parameters.

Creating a Callback Function

One of the primary uses for function pointers is to create callback functions. A
callback function is a function that you have created in your program that is called by a
function or subroutine in an external library. Windows uses callback functions to
enumerate through Window objects like fonts, printers and forms. The qsort, function
contained within the C Runtime Library sorts the elements of an array using a callback
function to determine the sort order. The prototype for the qsort function is contained in
stdlib.bi:

declare sub qsort cdecl alias "qsort" (byval as any ptr, byval as size_t,
byval as size_t, byval as function cdecl(byval as any ptr, byval as any
ptr) as integer)

The following lists the parameter information for the qsort subroutine.

1. The first parameter is the address to the first element of the array. The easiest way
to pass this information to qsort is to append the address of operator to the first
element index: @myArray(0).

2. The second parameter is the number of elements in the array, that is the array
count.

3. The third parameter is the size of each element in bytes. For an array of integers,
the element size would be 4 bytes.

4. The fourth parameter is a function pointer to the user created compare function.
The function must be declared using the Cdecl passing model, as shown in this
parameter.

Using this information, you can see how qsort works. By passing the address of the
first element along with the count of elements, and the size of each element, qsort can
iterate through the array using pointer arithmetic. Qsort will take two array elements,
pass them to your user defined compare function and use the compare function's return
value to sort the array elements. It does this repeatedly until each array element is in
sorted order. The following program uses the qsort subroutine and a compare function to
sort an array of integers.

1

2

3

4

5

6

7

8

9

10

Option Explicit

#include "crt.bi"

'Declare the compare function

'This is defined in the same manner as the qsort declaration

Declare Function QCompare Cdecl (Byval e1 As Any Ptr, Byval e2 As Any Ptr) _

As Integer

'Dimension the array to sort

86

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

Dim myArray(10) As Integer

Dim i As Integer

'Seed the random number generator

Randomize Timer

Print "Unsorted"

'Load the array with some random numbers

For i = 0 To 9

 'Rnd returns a number between 0 and 1

 'This converts the number to an integer

 myArray(i) = Int(Rnd * 20)

 'Print unsorted array

 Print "i = ";i;" value = ";myArray(i)

Next

Print

'Call the qsort subroutine

qsort @myArray(0), 10, Sizeof(Integer), @QCompare

Print

'Print sorted array.

Print "Sorted"

For i = 0 To 9

 'Rnd returns a number between 0 and 1 to convert to integer

 Print "i = ";i;" value = ";myArray(i)

Next

Sleep

End

'The qsort function expects three numbers

'from the compare function:

'­1: if e1 is less than e2

'0: if e1 is equal to e2

'1: if e1 is greater than e2

Function QCompare Cdecl (Byval e1 As Any Ptr, _

 Byval e2 As Any Ptr) As Integer

 Dim As Integer el1, el2

 Static cnt As Integer

 'Get the call count and items passed

 cnt += 1

 'Get the values, must cast to integer ptr

 el1 = *(Cptr(Integer Ptr, e1))

 87

56

57

58

59

60

61

62

63

64

65

66

 el2 = *(Cptr(Integer Ptr, e2))

 Print "Qsort called";cnt;" time(s) with";el1;" and";el2;"."

 'Compare the values

 If el1 < el2 Then

 Return ­1

 Elseif el1 > el2 Then

 Return 1

 Else

 Return 0

 End If

End Function

Listing 8.5: qsort.bas

Analysis: Line 3 includes the crt.bi file so that the qsort routine will be available in
the program. You need to include this file if you want to use any of the CRT functions.
Line 7 declares the compare function. You will notice that it is declared as a Cdecl
function, which matches the 4th parameter definition in the qsort declaration. Since qsort
expects to see either a -1, 0 or 1, the function's return type is an integer. The undercores
character _ at the end of line 7 is the line continuation character and tells the compiler
that the following line is actually a part of this line. In line 11 an array of integers is
dimensioned. The array will have 10 elements, with indexes from 0 to 9. Line 12
dimensions a working variable i, that will be used to load and display the array values.

Line 15 seeds the random number generator by using the value from the Timer
function. The Timer function returns the number of seconds, as a double-type value,
since the computer was started. Lines 19 through 25 initializes the array with some
random integers and displays them to the console screen. The code in line 22, Int(Rnd *
20), uses the Rnd function which returns a double precision number between 0 and 1.
That number is multiplied by twenty to produce a double-precision number between 0
and 20 which is then converted to an integer value using the Int function. Since Int
returns the largest integer less than or equal to the input, the resulting random numbers
will range from 0 to 19. In line 24 the value of the current array index is printed to the
console screen.

In line 29 the qsort subroutine is called. Since the array indexes range from 0 to 9,
the address of operator on the zero index in used for the first parameter. The array size is
10, so that is used as the second parameter. The array is an integer array, so
Sizeof(Integer) is used to pass the array element size. The final parameter is the address
of the compare function which is passed to qsort using the address of operator. Lines 34
through 37 print out the now sorted array. Lines 39 and 40 close the program in the usual
way.

Lines 47 through 66 contain the compare function code. In line 47 the function is
defined just like the declare statement in line 7 using two Any Ptr parameters and
returning an integer. The Any Ptrs allow qsort to be able to sort any type of data,
including composite types. Lines 49 and 50 delcare the function's working variables.
Qsort will pass pointers to the functions, not the actual data, so two integers need to be
declared so that the data that the pointers point to can be compared. The variable cnt is
defined as Static so that its value will be preserved between calls to the function. Cnt is
used to keep track of how many calls to the function qsort will make as it sorts the array.

88

Lines 55 and 56 use the indirection operator to return the data from the passed
pointers. Notice the Cptr is used to convert the Any Ptr parameters to Integer Ptrs before
using the indirection operator. Remember that the code inside the parenthesis will be
executed before applying the indirection operator. Line 57 prints out the current call
count and the passed parameter values.

Line 59 through 65 compare the two values and return the appropriate indicator
value back to qsort. The Return statement, as expected, is used to set the function's
return value. The function is closed using the End Function keywords in line 66.

When you run the program you should something similar to the following.

Unsorted

i = 0 value = 14

i = 1 value = 18

i = 2 value = 2

i = 3 value = 14

i = 4 value = 3

i = 5 value = 15

i = 6 value = 16

i = 7 value = 4

i = 8 value = 10

i = 9 value = 19

Qsort called 1 time(s) with 18 and 15.

Qsort called 2 time(s) with 19 and 15.

Qsort called 3 time(s) with 10 and 15.

Qsort called 4 time(s) with 2 and 15.

Qsort called 5 time(s) with 14 and 15.

Qsort called 6 time(s) with 3 and 15.

Qsort called 7 time(s) with 14 and 15.

Qsort called 8 time(s) with 16 and 15.

Qsort called 9 time(s) with 4 and 15.

Qsort called 10 time(s) with 16 and 15.

Qsort called 11 time(s) with 4 and 15.

Qsort called 12 time(s) with 18 and 16.

Qsort called 13 time(s) with 19 and 18.

Qsort called 14 time(s) with 18 and 16.

Qsort called 15 time(s) with 10 and 4.

Qsort called 16 time(s) with 2 and 10.

Qsort called 17 time(s) with 14 and 10.

 89

Qsort called 18 time(s) with 3 and 14.

Qsort called 19 time(s) with 14 and 14.

Qsort called 20 time(s) with 10 and 4.

Qsort called 21 time(s) with 2 and 10.

Qsort called 22 time(s) with 14 and 10.

Qsort called 23 time(s) with 3 and 14.

Qsort called 24 time(s) with 10 and 4.

Qsort called 25 time(s) with 2 and 10.

Qsort called 26 time(s) with 3 and 10.

Qsort called 27 time(s) with 3 and 4.

Qsort called 28 time(s) with 2 and 4.

Qsort called 29 time(s) with 3 and 2.

Sorted

i = 0 value = 2

i = 1 value = 3

i = 2 value = 4

i = 3 value = 10

i = 4 value = 14

i = 5 value = 14

i = 6 value = 15

i = 7 value = 16

i = 8 value = 18

i = 9 value = 19

Output 8.3: Output of qsort.bas

The first group of numbers show the unsorted array. The middle group of numbers
show the number of times the compare function is called along with the values being
sorted. The last group of numbers show the sorted array. Even though qsort is called
quite a number of times even on this small array, the routine is extremely fast since it
uses pointers to sort the values in the array.

Pointer to Pointer

In FreeBasic you can create a pointer to any of the supported data types, including
the pointer data type. A pointer to a pointer is useful in situations where you need to
return a pointer to a function or in creating specialized data structures such as linked-lists
and ragged arrays. A pointer to a pointer is called multi-level indirection.

Caution You can have as many levels of indirection as needed, but anything
beyond two levels is rarely useful and difficult to manage.

90

One application of a pointer to pointer is the creation of memory arrays. The
following program demonstrates the creation, manipulation and freeing of a memory
array.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Option Explicit

'Declare a pointer to an int pointer

Dim myMemArray As Integer Ptr Ptr

Dim As Integer i, j

'Create 10 rows of integer pointers

myMemArray = Callocate(10, Sizeof(Integer Ptr))

'Add 10 columns of integers to each row

For i = 0 To 9

 myMemArray[i] = Callocate(10, Sizeof(Integer))

Next

'Add some data to the memory segment

For i = 0 To 9

 For j = 0 To 9

 myMemArray[i][j] = Int(Rnd * 10)

 Next

Next

'Print out data

For i = 0 To 9

 For j = 0 To 9

 Print "i,j = ";i;",";j;" Mem Array =";myMemArray[i][j]

 Next

Next

'Free memory segment

For i = 0 To 9

 Deallocate myMemArray[i]

Next

'Free the pointer to pointer

Deallocate myMemArray

Sleep

End

Listing 8.6: memarray.bas

Analysis: Line 4 dimensions a pointer to an integer pointer, myMemArray, which
will simulate a two dimensional array, with myMemArray pointing to a list of integer

 91

pointers. This list of pointers will comprise the “rows” of the array. Line 5 just declares
some working variables that are used in the For-Next loops later in the program.

 Line 8 creates the rows of the array by allocating a memory segment that will
contain 4 integer pointers, which are initialized in lines 11 through 13. Remember that
the index method of accessing a pointer automatically does the pointer arithmetic for
you. The code in lines 11 through 13 iterates through the memory segment created in
line 8 and initializes the memory segment with pointers to memory segments that will
contain integers. In other words, you have a pointer that is pointing to a list of pointers.
These newly created memory segments are the columns for each row. Each column index
will be a pointer to a memory location containing an integer.

Lines 16 through 20 add some random numbers to the memory array. Notice that
by using the indexing method you can access the memory array just like a normal array. i
points to the row (the list of pointers) and j points to the individual columns within that
row which contain the integer data. The same method is used in lines 23 through 27 to
print out the array values.

Lines 30 through 32 free the individual rows of memory that were created in line 8. It is
important that each row be freed before freeing myMemArray. If you were to just free
myMemArray, the rows would still be in memory, but unaccessible, causing a memory
leak. Once all the rows have been freed, myMemArray can be freed in line 34. Since the
program is terminating, Deallocating the memory is not strictly required in this instance,
but if you needed to reuse the memory, then you must Deallocate in the method
described, otherwise you will get a memory leak while the program is running. Lines 36
and 37 close the program in the usual way.

Running the program should produce a result similar to the following.

i,j = 0, 1 Mem Array = 5

i,j = 0, 2 Mem Array = 1

i,j = 0, 3 Mem Array = 8

i,j = 0, 4 Mem Array = 5

i,j = 1, 0 Mem Array = 4

i,j = 1, 1 Mem Array = 3

i,j = 1, 2 Mem Array = 8

i,j = 1, 3 Mem Array = 8

i,j = 1, 4 Mem Array = 7

i,j = 2, 0 Mem Array = 1

i,j = 2, 1 Mem Array = 8

i,j = 2, 2 Mem Array = 7

i,j = 2, 3 Mem Array = 5

i,j = 2, 4 Mem Array = 3

i,j = 3, 0 Mem Array = 0

i,j = 3, 1 Mem Array = 0

i,j = 3, 2 Mem Array = 3

92

i,j = 3, 3 Mem Array = 1

i,j = 3, 4 Mem Array = 1

i,j = 4, 0 Mem Array = 9

i,j = 4, 1 Mem Array = 4

i,j = 4, 2 Mem Array = 1

i,j = 4, 3 Mem Array = 0

i,j = 4, 4 Mem Array = 0

Output 8.4: Output of memarray.bas

As you can see from the output, the memory array behaves exactly like a
predefined array. This structure is useful for adding dynamic arrays to type definitions,
which normally cannot hold a dynamic array. You will see this in more detail in the
chapter on composite types.

One last note on this program. If you run the program more than once, you will
notice that the values in the array are always the same, even though the program is
generating random numbers. This is because the program did not seed the random
number generator using the Randomize statement. To get different numbers for each run,
add Randomize Timer before calling the Rnd function.

A Look Ahead

Pointers are an efficient and powerful data type, and you will be seeing more of
them in this book, including the next chapter where you will explore the string data types
available in FreeBasic.

 93

9 String Data Types

Strings are an essential part of programming, and proper manipulation of strings
is an essential skill for any programmer. You will need to use strings in virtually every
program you will write, from games to data entry programs. Strings are important
because humans use strings to communicate concepts and ideas. A menu in a game
communicates the various game options to the user. An address stored in a database
communicates the location of the person who lives at that address. Programs are
solutions to problems, and in most cases, must communicate that solution to the user
through the use of strings.

Computers however, only understand numbers. The string “¡FreeBasic está
fresco!“ has no meaning to the computer. For the very first computers this did not matter
much, since those early computers were just glorified calculators, albeit calculators that
took up a whole room. However it soon became evident to computer engineers that in
order for the computer to be a useful tool, it needed to be able to somehow recognize
string data, and be able to manipulate that string data.

Since computers only understand numbers, the solution was to convert alpha-
numeric characters to numbers via translation tables. The familiar ASCII code table is one
such translation scheme that takes a set of alpha-numeric characters and converts them
to numbers. The “A” character is encoded as decimal 65, the exclamation point as
decimal 33 and the number 1 is encoded as decimal 49. When you press any key on your
keyboard, a scancode for that key is generated and stored in the computer as a number.

Humans group letters together to form words, and words to form sentences. A
certain arrangement of letters and words mean something according to the semantic
rules the writer's language. When you read the string “FreeBasic is cool!” you understand
the meaning of the words if you can read the English language. The computer however
doesn't know what FreeBasic is and doesn't know what it means to be cool. When you
read that something is “cool” you know that this is slang for great or excellent. All the
computer can do is store the string in memory in a way that preserves the format of the
string so that a human reading the string will understand its meaning.

While computers have grown in both speed and capacity, the basic computing
processes haven't changed since the 1950's. The next revolution in computing won't be
quantum processors or holographic memory; it will be when computers can understand
language.

The solution to the storage problem was to simply store string data in memory as a
sequence of bytes, and terminate that sequence of bytes with a character 0. To put it
another way, a string in computer memory is an array of characters, terminated with a
character 0 to signal the end of the string. Virtually all early programming languages, and
many modern ones, have no native String data type. A string in C is a Null (character 0)
terminated array of Char, where Char can be interpreted as both a character and number.
While this scheme accurately reflects the internal structure of a string in memory, it is
hard to work with and error prone, and doesn't reflect the way humans work with string
data. A better solution to the problem was the creation of the native String data type. The
internal structure of a string has not changed, it is still stored in memory as a sequence

94

of bytes terminated by a Null character, but the programmer can interact with string data
in a more natural, humanistic way.

FreeBasic has four intrinsic string data types, listed in the following table.

String Type Declaration Purpose

Dynamic String Dim myString as String 8-bit string that is
dynamically allocated and
automatically resized.

Fixed Length String Dim myString as String *
length

8-bit, fixed-length string.

Zstring Dim myString as Zstring *
length

Dim myString as Zstring Ptr

8-bit, fixed-length, Null
terminated character string.
A Zstring is a C-style string.

Wstring Dim myString as Wstring *
length

Dim myString as Wstring Ptr

16-bit, fixed-length, Null
terminated string used with
Unicode functions.

Table 9.1: Intrinsic FreeBasic String Data Types

All FreeBasic strings can hold up to 2 GB of data, or up to the amount of memory
on your computer.

Dynamic Strings

Dynamic strings are variable-length strings that the compiler automatically
allocates and resizes as needed. Dynamic strings are actually structures stored in
memory, called a string descriptor, that contain a pointer to the string data, the length of
the string data and the size of the string allocation. Dynamic strings are allocated in 36
byte blocks, which reduces the amount of resizing that the compiler must do if the string
size changes. The following program displays the internal string structure data for a
typical dynamic string3.

1

2

3

4

5

6

7

8

9

10

11

12

Option Explicit

'String descriptor

Type StringDesc

 strdata As Zstring Ptr

 length As Integer

 size As Integer

End Type

'Create a string

Dim As String myString = "This is a dynamic string in FreeBasic!"

'Dimension a pointer to the string descriptor

3String descriptor code provided by FreeBasic forum member cha0s.
 95

13

14

15

16

17

18

19

20

21

Dim As StringDesc Ptr StringData = Cptr(stringdesc Ptr, @myString)

'Print string descriptor data

Print "Data: ";*(StringData­>strdata)

Print "Length: ";StringData­>length

Print "Size: ";StringData­>size

Sleep

End

Listing 9.1: dynastring.bas

Analysis: Lines 4 through 8 defines the string descriptor data type. The strdata
field is a pointer to a NULL terminated string in memory. The length fields contains the
number of characters in the string. The size field indicates the length of the current
memory-block allocation. Line 11 creates a dynamic string and initializes the value of the
string. Line 13 creates a pointer, StringData, that points to the string descriptor of
myString. Notice that the address of operator is used to return the address of the string
descriptor, which is then cast as a StringDesc Ptr using the Cptr function.

Lines 16 through 18 then print out the string descriptor data. The member
operator, ->, is used with type definition pointers and is comparable to using *PtrName.
The member operator will be discussed in the chapter on composite types. The program
is closed in the usual way.

Running the program in FBIde will produce the following result.

Data: This is a dynamic string in FreeBasic!

Length: 38

Size: 72

Output 9.1: Output of dynastring.bas

Dynamic strings use Zstrings strings internally so that you can pass a dynamic
string to a function that expects a Null terminated string and the function will work
correctly. The Windows api, the C runtime library and most third-party libraries written in
C expect a Null terminated string as a string parameter.

Caution In other versions of Basic, strings have been used to load and manipulate
binary data. If the binary data contains a Null character, this could cause problems with
FreeBasic strings, since the Null character is used to terminate a string. While it is
possible to have an embedded Null in a dynamic string (since dynamic strings have a
string descriptor), if you pass this data to a third party library function that is expecting a
C-style string, the data will read only up to the Null character, resulting in data loss.
Instead of using strings to read binary data, you should byte arrays instead.

96

Since a dynamic string is actually a pointer to a string descriptor, you cannot use
dynamic strings in type definitions that you are going to save to a file. You should use a
fixed length string instead.

Fixed Length Strings

Fixed length strings are defined using a length parameter, and can only hold
strings that are less than or equal to the defined size. Trying to initialize a fixed length
string with data that is longer than the defined size will result in the string being
truncated to fit.

The following short program illustrates creating and using a fixed length string.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Option Explicit

'Define a fixed length string

Dim myFString As String * 20

'Save some dat in the string

myFString = "This should fit."

Print myFString

'This data will be truncated.

myFString = "This string will be truncated."

Print myFString

Sleep

End

Listing 9.2: fixedstr.bas

Analysis: Lines 4 defines a fixed length string that can hold up to 20 characters.
Line 7 loads the variable with a string and line 8 prints the contents of the variable. Since
the string "This should fit." is smaller than 20 characters, so the whole string will be
printed out. Line 11 tries to initialize the string with data that is longer than 20 characters
so the string will be truncated when it is printed out in line 12.

When you run the program you should see the following output.

This should fit.

This string will be

Output 9.2: Output of fixedstr.bas

 97

As you can see from the output, if a string is too long to fit in the variable, it will be
truncated to fit. Fixed length strings are very useful when creating random access records
using type definitions. This technique is used in the chapter on file handling.

Zstrings

Zstrings are Null terminated, C-style strings. The main purpose of a Zstring is to
interface with third-party libraries that expect a C-style strings, however they are useful
even if you do not plan to pass them to third-party libraries. Zstrings can be defined just
like a fixed-length string, Dim myZstring as Zstring * 10, and FreeBasic will handle
them just like fixed strings, automatically truncating data to fit the defined size.

Unlike fixed strings however, Zstrings can be dynamically managed by declaring a
Zstring pointer and using the associated memory functions. When using a dynamically
allocated Zstring, you must be careful not to overwrite the the size of the string, as this
will overwrite parts of memory not contained in the string and may cause the program or
even the operating system to crash.

When using either type of Zstring, FreeBasic will manage the terminating Null
character for you, but the storage size of a Zstring will be 1 less than the defined size
since the the Null character occupies the last character position. When calculating the
size of a Zstring be sure to add 1 to the value to account for the Null terminator. You must
also not include the character 0 in any of your data, or the data will be truncated since
FreeBasic will see the Null character as the end of the string.

The following program shows both uses of the Zstring data type.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Option Explicit

'Declare a fixed length Zstring

Dim myFixedZstring As Zstring * 20 + 1

'Declare a dynamic Zstring

Dim myDynaZstring As Zstring Ptr

'Load some data into the fixed zstring

Print "123456789012345678901"

myFixedZstring = "This should fit."

Print myFixedZstring

myFixedZstring = "This will be truncated."

Print myFixedZstring

'Create a dynamic zstring

Print "123456789012345678901"

myDynaZstring = Callocate(20 + 1)

*myDynaZstring = "Let's add some data."

Print *myDynaZstring

'Resize the string: 20 for current data + 5 for new

'data + 1 for Null

myDynaZstring = Reallocate(myDynaZstring, 20 + 5 + 1)

Print "12345678901234567890123456"

98

24

25

26

27

28

29

30

31

*myDynaZstring = "Let's add some more data."

Print myDynaZstring[0]

'Deallocate the memory segment

Deallocate myDynaZstring

Sleep

End

Listing 9.3: zstring.bas

Analysis: Line 4 declares a fixed length Zstring. Notice that the desired data length
is 20 so 1 is added to to allocate space for the terminating Null character. Line 6 declares
a pointer to a Zstring that will be managed dynamically. Line 9 prints out a ruler to
compare the print statements in line 11 and 13. Line 10 initializes the Zstring with some
data that is small enough to fit in the declared size. Line 12 adds some data that is too
long to fit within the Zstring, which will be truncated to fit.

Line 16 prints another ruler for comparison with the dynamic Zstring data. Line 17
Callocates enough space for a 20-byte string along with the terminating Null character.
Since myDynaZstring is defined as a Zstring Ptr, the indirection operator is used to
initialize the variable data in line 18. Line 22 resizes the Zstring to hold 5 additional
characters plus the terminating Null using the Reallocate function. Another ruler is
printed in line 23 to show the new size of the data loaded into the variable in line 24. Line
25 uses the pointer index method to print out the contents of the variable. Line 28
deallocates the allocated memory.

When you run this program you should get the following output.

123456789012345678901

This should fit.

This will be truncat

123456789012345678901

Let's add some data.

12345678901234567890123456

Let's add some more data.

Output 9.3: Output of zstring.bas

As you can see, the fixed length version of the Zstring data type behaves exactly
like the fixed string data type and the dynamic version behaves exactly like any other
pointer-based memory segment. Since there is no intrinsic method for determining the
size of a Zstring allocation, you must be careful not to over-run the buffer. The best way
to do this is to keep a current allocation size in a separate variable that can be referenced
as needed.

You will notice in Line 25 of the listing that the pointer index method was used to
print the contents of the resized Zstring. What would the output be if you changed the

 99

index from 0 to 6? Remember that a pointer index behaves much like an array index, and
a Zstring could be viewed as an array of characters. If you were to use 6 as the index, the
output would be add some more data. The Print statement would start at character
position 6 and print everything up to the terminating Null character.

You can directly assign a fixed length Zstring to a dynamic string. For a dynamic
Zstring, the pointer must be dereferenced by using * or the pointer index method. Keep
in mind that the behavior of the indexing method is the same for assignments as it is for
the Print statement.

Wstrings

Dynamic, fixed and Zstrings all use 1 byte per character. Wstrings, also called wide
strings, use 2 bytes per character and is generally used in conjunction with Unicode
strings functions. Unicode is, strictly speaking, a character coding scheme designed to
associate a number for every character of every language used in the world today, as
well as some ancient languages that are of historical interest. In the context of
developing an application, Unicode is used to internationalize a program so that the end-
user can view the program in their native language.

Wstrings can be both fixed length and dynamic and are similar to Zstrings.
Wstrings will be discussed in more detail in the chapter on Unicode.

String Functions

Creating and using strings in your application will often consist of manipulating
those strings and FreeBasic has a rich set of string functions, which are listed in the
following table.

Function Syntax Comment

Asc B = Asc(string)

B = Asc(string, position)

Returns the character code
of the first character in a
string as a uninteger, or the
character code of character
at position.

Bin B = Bin(number)

B = Bin(number, digits)

Returns the binary form of
number as a string. Can
optionally return only
number of digits.

Chr B = Chr(code)

B = Chr(code, code, ...)

Returns the character
represented by Ascii Code. If
multiple codes are passed to
Chr, the function will return
a string of characters.

Hex B = Hex(number)

B = Hex(number, digits)

Returns the hexadecimal
form of number as a string.
Can optionally return only
number of digits.

Instr B = Instr(string, substring)

B = Instr(start, string,

Returns the position of
substring within string as an

100

Function Syntax Comment

substring) integer. Will accept an
optional start position. If
substring is not found, 0 is
returned.

Lcase B = Lcase(string) Converts string to all
lowercase.

Left B = Left(string, number) Returns the leftmost number
of characters from string.

Len B = Len(string)

B = Len(data_type)

Returns the length of a
string or the length of a
numeric data type.

Lset Lset(string_variable, string) Left justifies string within
string varibale.

Ltrim B = Ltrim(string)

B = Ltrim(string, trimset)

B = Ltrim(string, ANY
trimset)

The first format will trim all
spaces from left side of
string. The second format
will trim characters from left
side of string if they exactly
match trimset. The third
format will trim characters
from left side of string if
they match any in trimset.

Mid (Function) B = Mid(string, start)

B = Mid(string, start, length)

Returns a substring from
string starting at start to the
end of the string, or of
length.

Mid (Statement) Mid(string, start) = B

Mid(string, start, length) = B

Copies contents of B into
string starting at start for
length. The current
characters in string are
replaced. If no length is
given, all of B is inserted.

Oct B = Oct(number)

B = Oct(number, digits)

Returns the octal form of
number as a string. Can
optionally return only
number of digits.

Right B = Right(string, number) Returns the rightmost
number of characters from
string.

Rset Rset(string_variable, string) Right justifies string within
string varibale.

Rtrim B = Rtrim(string)

B = Rtrim(string, trimset)

B = Rtrim(string, ANY
trimset)

The first format will trim all
spaces from right side of
string. The second format
will trim characters from
right side of string if they

 101

Function Syntax Comment

exactly match trimset. The
third format will trim
characters from right side of
string if they match any in
trimset.

Space B = Space(number) Returns a string with
number of spaces.

String B = String(number, code)

B = String(number, string)

String will return a string
with number of characters
that correspond to the ascii
character code or the first
character of string.

Trim B = Trim(string)

B = Trim(string, trimset)

B = Trim(string, ANY
trimset)

The first format will trim all
spaces from left and right
side of string. The second
format will trim characters
from left and right side of
string if they exactly match
trimset. The third format will
trim characters from left
and right side of string if
they match any in trimset.

Ucase B = Ucase(string) Converts string to all
uppercase.

Table 9.2: FreeBasic String Functions

Len Versus Sizeof

For numeric data types, Len and Sizeof both return the size of the data type. For
string data types, Len returns the length of the string data and Sizeof returns the data
type size. The following program illustrates the differences in the two functions.

1

2

3

4

5

6

7

8

9

10

11

12

13

Option Explicit

'declare some string variables

Dim myDynaString as String

Dim myFixedString as String * 20

Dim myZString as ZString * 30

Dim myWString as WString * 30

'add some data

myDynaString = "Hello World From FreeBasic!"

myFixedString = "Hello World!"

myZString = "Hello World From FreeBasic!"

myWString = "Hello World From FreeBasic!"

102

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Print "Dynamic string: ";myDynaString

Print "Fixed string: ";myFixedString

Print "Zstring: ";myZString

Print "Wstring: ";myWString

Print

'print out the lengths of strings

Print "Length of Dynamic String is";Len(myDynaString);" byte(s)."

Print "Length of Fixed String";Len(myFixedString);" byte(s)."

Print "Length of ZString is";Len(myZString);" byte(s)."

Print "Length of WString is";Len(myWString);" byte(s)."

Print

'print out the variable size

Print "Size of Dynamic String is";SizeOf(myDynaString);" byte(s)."

Print "Size of Fixed String";SizeOf(myFixedString);" byte(s)."

Print "Size of ZString is";SizeOf(myZString);" byte(s)."

Print "Size of WString is";SizeOf(myWString);" byte(s)."

'wait for keypress

Sleep

End

Listing 9.4: strtype.bas

Analysis: Lines 4 through 7 dimension a string of each type. Lines 10 through 13
initialize the string variables with some string data. Lines 15 through 18 print out the
string data for reference. Lines 22 through 25 use the Len function to print out the length
of the actual string data. Lines 29 through 32 use the Sizeof function to print out the
length of the data types. The program is closed in the usual manner.

Running the program should produce the following output.

Dynamic string: Hello World From FreeBasic!

Fixed string: Hello World!

Zstring: Hello World From FreeBasic!

Wstring: Hello World From FreeBasic!

Length of Dynamic String is 27 byte(s).

Length of Fixed String 20 byte(s).

Length of ZString is 27 byte(s).

Length of WString is 27 byte(s).

 103

Size of Dynamic String is 12 byte(s).

Size of Fixed String 21 byte(s).

Size of ZString is 30 byte(s).

Size of WString is 60 byte(s).

Output 9.4: Output of stringtype.bas

As you can see from the output, Len and Sizeof return different values. The Len
function automatically dereferences the string variables and returns the length of the
actual string, while the Sizeof function returns the length of the string variable itself. For a
dynamic string, Sizeof returns the length of the string descriptor. The string descriptor
contains a pointer to a Zstring (4 bytes), an integer containing the length of the string (4
bytes) and an integer that contains the size of the current allocation (4 bytes) which total
to 12 bytes. For fixed length string and for Zstrings, Sizeof returns the dimensioned size
of the variable. For a Wstring, the size is twice the dimensioned value because a Wstring
uses 16-bit characters rather than 8-bit characters. The Sizeof function is useful for
determining the allocation size of fixed length strings, fixed allocation Zstrings and fixed
allocation Wstrings so that you do not inadvertently lose data by trying to initialize the
variable with more data than it can hold. Dynamic strings can contain variable length
data so Sizeof is rarely used with dynamic strings.

Using String Functions with Zstring Pointers

There will be times when you will need to use a string function with a Zstring
pointer. If you try to use the pointer with directly with a string function you will receive a
Type Mismatch error from the compiler. What you need to do is to dereference the pointer
when passing the Zstring to a string function so that the function can access the string
data directly. The following program illustrates this concept.

1

2

3

4

5

6

7

8

9

10

11

12

13

Option Explicit

Dim myZstring As Zstring Ptr

myZstring = Callocate(10, Sizeof(Byte))

*myZstring = "Hello FB!"

Print "F is at position";Instr(*myZstring, "F")

Deallocate myZstring

Sleep

End

Listing 9.5: zstringfunc.bas

Analysis: Line 3 dimensions a Zstring pointer, myZstring. Line 5 allocates some
space for the string data in line 6. Line 8 uses the Instr function to determine the position

104

of the F character in the string and prints the position to the screen. Notice that the
dereference operator is used inside the function with myZstring so that Instr has access
to the string data. Line 10 deallocates the memory assigned to the variable. The program
is then closed in the usual way.

When you run the program you should see the following output.

F is at position 7

Output 9.5: Output of zstringfunc.bas

This technique only applies to a Zstring pointer. A fixed length Zstring can be
passed directly to the string functions with no need to dereference the variable.

The MK* and CV* String Functions

There are times when you will want to save numeric data to a disk file, such as
when you are creating your own database system. Saving numeric data as strings can
be problematic since the string representation of the data can vary. Once solution to this
problem is to use the various MK* functions which convert the binary representation of a
number into a string, and CV* functions which convert the string back into a number. The
advantage of using these functions is consistent numeric representation; an integer is
converted into a 4-byte string, a double is converted into an 8-byte string. This makes
saving and reading binary data from the disk quite easy. The following table lists the MK*
and CV* functions.

Function Syntax Comment

Mkd B = Mkd(number) Converts a double-type
number to a string with
length of 8 bytes.

Mki B = Mki(number) Converts an integer-type
number to a string with
length of 4 bytes.

Mkl B = Mkl(number) Converts a long-type
number to a string with
length of 4 bytes.

Mklongint B = Mklongint Converts a longint-type
number to a string with
length of 8 bytes.

Mks B = Mks(number) Converts a single-type
number to a string with
length of 4 bytes.

Mkshort B = Mkshort Converts a short-type
number to a string with
length of 2 bytes.

Cvd B = Cvd(string) Converts an 8 byte string

 105

Function Syntax Comment

created with Mkd into a
double-type number.

Cvi B = Cvi(string) Converts a 4 byte string
created with Mki into an
integer-type number.

Cvl B = Cvl(sring) Converts a 4 byte string
created with Mkl into an
integer-type number.

Cvlongint B = Cvlongint(string) Converts an 8 byte string
created with Mklongint into
a longint-type number.

Cvs B = Cvs(string) Converts a 4 byte string
created with Mks into a
single-type number.

Cvshort B = Cvshort(string) Converts a 2 byte string
created with Mkshort into a
short-type number.

Table 9.3: MK* and CV* String Conversion Functions

The following program shows how to use the functions.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Option Explicit

'Create some numeric variables

Dim As Integer myInt, myIntC, i

Dim As Double myDbl, myDblC

'Create some string variables

Dim As String mySInt, mySDbl

'Load some data

myInt = 10

myDbl = 254.56

Print "Integer: ";myInt

Print "Double: ";myDbl

Print

'Convert to strings

mySInt = Mki(myInt)

mySDbl = Mkd(myDbl)

Print

'Print out values

Print "Mki: ";

For i = 1 To Len(mySInt)

 Print Asc(Mid(mySInt, i, 1));" ";

106

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Next

Print

Print "Mkd: ";

For i = 1 To Len(mySDbl)

 Print Asc(Mid(mySDbl, i, 1));" ";

Next

Print

'Convert back to numbers

myIntC = Cvi(mySInt)

myDblC = Cvd(mySDbl)

Print

Print "Cvi: ";myIntC

Print "Cvd: ";myDblC

Sleep

End

Listing 9.6: mkcv.bas

Analysis: Line 4 creates three integer-type variables, myInt which will contain the
initial integer value, myIntC which will contain the numeric value after the Cvi conversion
and i which is a variable that will be used in the following For loop. Line 5 create two
double-type variables, myDbl which will contain the initial double value and myDblC
which will contain the Cvd conversion value. Line 7 creates two string variables, mySInt
and mySDbl which will contain the Mki and Mkd string conversion values respectively.

Lines 10 and 11 set the initial values of the variables and lines 12 and 13 print out
those values for reference. Lines 16 and 17 convert the integer and double values to
binary string representations using the Mki and Mkd functions. Line 21 through 23 print
out the ascii code values for the converted integer string. The Len function is used to
determine the length of the string, which in the case of the integer will be four bytes. The
ascii codes are print rather than the characters since the string is a binary representation
of the integer value and some of the characters will not be visible on the screen. Lines 26
through 28 print out the character values for the converted double-type value.

Lines 31 and 32 convert the string representations back into numeric values which
are printed to the screen in lines 34 and 35.

When you run the program you should see the following output.

Integer: 10

Double: 254.56

Mki: 10 0 0 0

Mkd: 82 184 30 133 235 209 111 64

 107

Cvi: 10

Cvd: 254.56

Output 9.6: Output of mkcv.bas

You can see from the output that the Mk* functions create an exact binary
representation of the numeric values. Since the Mk* functions create strings that are the
same length as their numeric counterparts, you have a very consistent representation of
the numbers. This makes these functions quite useful when creating variable length
records that will be stored on the disk.

If your program requires fixed-length records, you can use a Type definition to create
disk records. This technique will be covered in the chapter on file handling.

Numeric String Conversion Functions

You find as you write programs that there are instances where you need to convert
a text string such as “124.5” into a number, and the number 124.5 into a string.
FreeBasic has several conversion functions that can be used to accomplish these tasks.

Function Syntax Comment

Format B = Format(number,
format_string)

Returns a formatted
number. You must include
"vbcompat.bi" in your
program to use this
function.

Str B = Str(number) Converts a numeric
expression to a string
representation. That is, 145
will become “145”.

Val B = Val(string) Converts a string to a
double value. The Val
functions will convert from
left to right, ending at the
first non-numeric character.

Valint B = Valint(string) Converts a string to an
integer value.

Vallng B = Vallng(string) Converts a string to a long
integer value.

Valuint B = Valuint(string) Converts a string to a
unsigned integer value.

Valulong B = Valulong(string) Converts a string to an
unsigned long integer value.

Table 9.4: Numeric String Functions

108

These functions work just like the Mk* and Cv* functions, except that these
functions work with text representations of the numeric values rather than binary
representations. A common usage of these functions is in reading text files that contain
text numbers, such as ini files, and the text needs to be converted to a number, and then
back to a string for output to the disk. They are also useful for getting input from the
user, a technique you will see in the chapter on the console functions.

The Format function is a general purpose function that can format numbers, dates
and time. A seperate chapter is devoted to using the Format function.

Wide String Functions

Since wide strings contain 16-bit characters, there are a few string functions that
work specifically with wide strings. The functions listed in the following table behave in
the same manner as their 8-bit counterparts.

Function Syntax Comment

Wbin B = Wbin(number)

B = Wbin(number, digits)

Returns the binary form of
number as a wide string.
Can optionally return only
number of digits.

Wchr B = Wchr(unicode)

B = Wchr(unicode, unicode,
...)

Returns the character
represented by Unicode. If
multiple codes are passed to
Wchr, the function will
return a string of unicode
characters.

Whex B = Whex(number)

B = Whex(number, digits)

Returns the hexadecimal
form of number as a wide
string. Can optionally return
only number of digits.

Woct B = Woct(number)

B = Woct(number, digits)

Returns the octal form of
number as a wide string.
Can optionally return only
number of digits.

Wspace B = Wspace(number) Returns a wide string with
number of spaces.

Wstr B = Wstr(number)

B = Wstr(ascii_string)

The first form of Wstr will
return a wide string
resprestation of a number.
The second form will
convert an ascii string to a
Unicode string.

Wstring B = Wstring(number, code)

B = Wstring(number, string)

String will return a wide
string with number of
characters that correspond
to the ascii character code
or the first character of
string.

 109

Table 9.5: Wide String Functions

The wide string functions work in the same manner as their regular string
counterparts.

String Operators

There are two string operators & and + which concatenate two or more strings
together. & is preferred over + since & will automatically convert the operands to strings,
where + will not.

CRT Character and String Functions

The C Runtime Library has a number of functions to identify different characters
and manipulate strings. These functions are useful for managing string data such as
identifying numbers or parsing tokens within a string. While all of these actions can be
coded using Basic code, using the CRT functions can speed development time, and in
some cases operate much faster than equivalent Basic code.

Character Functions

In the ctype.bi declaration file, located in the inc\crt folder, you will find a number
of functions to identify different types of characters. To use these functions in your
program you must include the ctype.bi file, #include once "crt/ctype.bi". The
following table lists the different character functions. All of these functions take an ascii
character code and return a non-zero result if successful or a zero result if not successful.

Function Syntax Comment

Isalnum B = Isalnum(asc_code) Returns non-zero if the
character is an alpha-
numeric character, zero if
not.

Isalpha B = Isalpha(asc_code) Returns non-zero if the
character is an alphabetical
character, zero if not.

Iscntrl B = Iscntrl(asc_code) Returns non-zero if the
character is a control
character, such as a Tab,
zero if not.

Isdigit B = Isdigit(asc_code) Returns non-zero if the
character is a numeric digit,
0 to 9, zero if not.

Isgraph B = Isgraph(asc_code) Returns non-zero if the
characterhas a glyph
associated with it, zero if
not. This function only
identifies the standard glyph
characters in the lower ascii
range.

110

Function Syntax Comment

Islower B = Islower(asc_code) Returns non-zero if the
character is lower-case, zero
if not.

Isprint B = Isprint(asc_code) Returns non-zero if the
character is a printable
character, zero if not. This
function only identifies the
printable characters in the
lower ascii range.

Ispunct B = Ispunct(asc_code) Returns non-zero if the
character is a punctuation
character, zero if not.

Isspace B = Isspace(asc_code) Returns non-zero if the
character is a whitespace
character, zero if not.
Whitespace is defined as a
space, form-feed, new-line,
carriage return, horizontal
and vertical tabs.

Isupper B = Isupper(asc_code) Returns non-zero if the
character is upper-case,
zero if not.

Isxdigit B = isxdigit(asc_code) Returns non-zero if the
character is a hexidecimal
digit, zero if not.
Hexadecimal digits include 0
through 9, A through F and
a through f.

Table 9.6: CRT Character Functions

The following program illustrates how to use these functions.

1

2

3

4

5

6

7

8

9

10

11

12

Option Explicit

#include once "crt/ctype.bi"

Dim As String myString

Dim As Integer ret, i, ichar

'Load some characters into the string

myString = "ABcd01!* " & Chr(128) & Chr(1)

'Print header on console

Print "Char";Tab(6);"Alnum";Tab(12);"Alpha";Tab(18);"Cntrl";Tab(24);

 111

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Print "Digit";Tab(30);"Graph";Tab(36);"Lower";Tab(42);"Print";Tab(48);

Print "Punct";Tab(54);"Space";Tab(60);"Upper"

Print String(79, "­")

'Examine each character in string.

For i = 1 To Len(myString)

 ichar = Asc(Mid(myString, i, 1))

 'Print the character

 Print Chr(ichar);

 Print Tab(6);

 'Check to see what kind of character it is

 ret = isalnum(ichar)

 'If character type then print Y

 If ret <> 0 Then

 Print "Y";

 Else

 Print "N";

 End If

 Print Tab(12);

 ret = isalpha(ichar)

 If ret <> 0 Then

 Print "Y";

 Else

 Print "N";

 End If

 Print Tab(18);

 ret = iscntrl(ichar)

 If ret <> 0 Then

 Print "Y";

 Else

 Print "N";

 End If

 Print Tab(24);

 ret = isdigit(ichar)

 If ret <> 0 Then

 Print "Y";

 Else

 Print "N";

 End If

 Print Tab(30);

 ret = isgraph(ichar)

 If ret <> 0 Then

 Print "Y";

 Else

 Print "N";

112

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

 End If

 Print Tab(36);

 ret = islower(ichar)

 If ret <> 0 Then

 Print "Y";

 Else

 Print "N";

 End If

 Print Tab(42);

 ret = isprint(ichar)

 If ret <> 0 Then

 Print "Y";

 Else

 Print "N";

 End If

 Print Tab(48);

 ret = ispunct(ichar)

 If ret <> 0 Then

 Print "Y";

 Else

 Print "N";

 End If

 Print Tab(54);

 ret = isspace(ichar)

 If ret <> 0 Then

 Print "Y";

 Else

 Print "N";

 End If

 Print Tab(60);

 ret = isupper(ichar)

 If ret <> 0 Then

 Print "Y"

 Else

 Print "N"

 End If

Next

Sleep

End

Listing 9.7: crt_char.bas

Analysis: Line 3 includes the ctype.bi file that is needed to link to these CRT
functions. Lines 5 and 6 declare the working variables. MyString will contain the
characters to identify, ret is the return value from the function, i is used in the For-Next

 113

loop and ichar contains the fascicle code of the character that is passed as the parameter
to the different functions. Line 12 through 15 display a header line that will be used to
identify which functions returns a true result. The different column headers refer to the
different functions. Alnum is the return column for the Isalnum function, the Alpha
column is the return for the Isalpha function and so on.

Line 18 and 94 comprise the For-Next block. Line 19 gets the current character
from the string and converts it to an ascii code using the Asc function. The character is
then tested with each function. If the function returns a non-zero result, a Y is printed in
the appropriate column. If the function returns a zero, an N is printed in the appropriate
column.

The program is then closed in the usual way.

When you run the program you should see the following result.

Char Alnum Alpha Cntrl Digit Graph Lower Print Punct Space Upper

­­

A Y Y N N Y N Y N N Y

B Y Y N N Y N Y N N Y

c Y Y N N Y Y Y N N N

d Y Y N N Y Y Y N N N

0 Y N N Y Y N Y N N N

1 Y N N Y Y N Y N N N

! N N N N Y N Y Y N N

* N N N N Y N Y Y N N

 N N N N N N Y N Y N

 N N N N N N Y N Y N

Ç N N N N N N N N N N

 N N Y N N N N N N N☺

Output 9.7: Output of crt_char.bas

As you can see, these functions work with the lower ascii characters, which are the
characters you would normally find in text files. Using these functions can make your job
a lot easier when you are trying to identify characters from a file or from user input.

Strtok Function

The Strtok function will return tokens separated by a delimiter set. Strtok is quite
fast and since it will look for a set of delimiters, it is much easier to use Strtok than Instr
within a loop. Strtok is contained in the string.bi declaration file located in the inc\crt
folder of your FreeBasic installation. Strtok is declared as:

declare function strtok cdecl alias "strtok" (byval as zstring ptr, _

 byval as zstring ptr) as zstring ptr

114

The first parameter is the string to parse and the second parameter is the delimiter
set. Strtok returns a pointer to the first token in the string. Even though the parameters
are defined as Zstring pointers, you can use dynamic strings since the compiler will
automatically dereference a dynamic string if it is passed to a Zstring pointer. This makes
working with this function quite easy. You will need to define a Zstring pointer as the
return value though.

The following program uses Strtok to parse a string into tokens.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Option Explicit

#include once "crt.bi"

Dim As String tstr, tmpstr, delim

Dim zret As Zstring Ptr

'Create delimiters

delim = " ,!­"

'Create parse string

tstr = "Hello­World, From Freebasic!"

'Create a working copy of string

'strtok will alter original string

tmpstr = tstr

'First call with string and delimiters

zret = strtok(tmpstr, delim)

'Check for a NULL pointer

If zret <> NULL Then

 Print zret[0]

 'Parse rest of string

 Do

 'Call with NULL to work on same string

 zret = strtok(NULL, delim)

 If zret <> NULL Then

 Print zret[0]

 End If

 Loop Until zret = NULL

End If

Sleep

End

Listing 9.8: strtok.bas

Analysis: Line 3 includes the crt library declarations so that Strtok is available to
the program. Lines 5 and 6 define the working variables. Tstr is the original parse string,
tmpstr is a copy of the original string and delim is the set of delimiters. Zret is defined as

 115

a Zstring pointer and will be the return value from the function. Line 10 sets the delimiter
set and line 12 sets the parse string. In line 15 a copy is made of the original string, since
Strtok will alter the string as it is parsed. If you need to save the original string value, use
a temporary string with the function rather than the original string. Line 17 calls Strtok
with the parse string and the delimiter set. This initial call sets up the function to parse
the string. Subsequent calls to Strtok will use a Null in place of the parse string to
indicate that you want to parse the original string and not a new string.

Line 19 checks for a Null pointer. Strtok will return a Null when it cannot extract
any tokens from the parse string. You should always check for a NULL pointer before
using the pointer reference. Line 20 prints the value of the token using the pointer index
method. This will print everything from index 0 up to the terminating Null character.
Remember that Zstring are C-type strings, an array of characters that terminate with
character zero, a Null.

Line 22 through 28 call Strtok with a Null for the parse string to extract each token
from the string. Thre loop terminates when a Null is returned from Strtok. Once again, in
line 25, the pointer is checked to make sure it isn't a Null pointer before the value is
printed to the console window.

After all the tokens have been processed, zret will be Null, the loop will exit and the
program will close in the usual manner.

When you run the program you should the following output.

Hello

World

From

Freebasic

Output 9.8: Output of strtok.bas

The output shows the individual tokens in the string. Not only is Strtok easy to use,
but because you can pass a set of delimiters the amount of code you have to write to
parse a string that has several delimiters is considerably less than if you wrote the parse
function in FreeBasic. Less code means less chance of things going wrong, which results
in a more robust, stable program.

A Look Ahead

So far in the book you have seen the individual intrinsic data types. There are
times though when you need an aggregate data type to fully describe your data. This is
where Type definitions and Unions come in handy, which are discussed in the next
chapter.

116

10 Composite Data Types

There are times when creating a program that you may want to define an
aggregate structure such as a personnel record, or an enemy in a game. While you can
do this using individual data types, it is hard to manage within a program. FreeBasic
offers two composite data types, the Type and Union.

Types

FreeBasic allows you to group several data types into a unified structure called a
Type definition which you can use to describe these aggregate data structures.

The basic structure of a type definition is:

Type typename

var definition

var definition

...

End Type

The Type-End Type block defines the scope of the definition. You define the
elements of the type structure in the same manner as using the Dim keyword, without
using Dim. The following code snippet shows how to build an employee type.

Type EmployeeType

fname As String * 10

 lname As String * 10

 empid As Integer

 dept As Integer

End Type

You can use any of the supported data types as data elements, including pointers
and other type definitions. When you create the type definition, such as the example
above, you are just creating a template for the compiler. In order to use the type
definition, you need to create a variable of the type, as the following code snippet
illustrates.

Dim Employee As EmployeeType

Once you have created a variable of the type, you can access each element within
the type using the dot notation var_name.field_name. Using the above example, to
access the fname field you would use Employee.fname = “Susan”.

To access multiple fields at a time, you can use the With-End With block. The
following code snippet shows how to use the With block with the above example.

 117

With Employee

 .fname = "Susan"

 .lname = "Jones"

.empid = 1001

 .dept = 24

End With

The following program shows how to define, create and manage a type definition.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Option Explicit

'Create type definition

Type EmployeeType

 fname As String * 10

 lname As String * 10

 empid As Integer

 dept As Integer

End Type

'Create an instance of the type

Dim Employee As EmployeeType

'Initialize the type

With Employee

 .fname = "Susan"

 .lname = "Jones"

 .empid = 1001

 .dept = 24

End With

'Print out header row

Print "First Name";Tab(13);"Last Name";Tab(25);"Emp ID";Tab(33);"Dept"

Print String(79, "­")

'Print out data

With Employee

 Print RTrim(.fname);Tab(13);RTrim(.lname);Tab(24);.empid;Tab(32);.dept

End With

Sleep

End

Listing 10.1: type.bas

Analysis: Line 4 through 9 define the type structure that is used in the program.
The type has 4 fields, two fixed length strings and 2 integer values. Dynamic strings can

118

be used within a type definition, however if you want to save the type information to the
disk, then you need to use fixed length strings. Dynamic strings are actually pointers to a
string descriptor and saving a type that contains dynamic strings will save the 4 byte
pointer value, rather than the actual string data, resulting in data loss.

Line 12 creates a variable of the type, Employee. The type definition is a template
and cannot be used until you create an instance of the type by creating a variable of the
type. Lines 15 through 20 initialize the type variable with some data using the a With-End
With block.

Line 23 prints a header row to the console that indicates the field name data. The
Tb function is used to align data names to the appropriate column. Line 24 uses the
String function to print a dashed line, just to offset the header row from the data row.
Lines 26 through 28 prints the type data. Rtrim is used on the fixed length string
elements to trim off any unused trailing spaces. The Tab function is again used to align
the data to the appropriate columns. The program is then ended in the usual way.

When you run the program you should the following output.

First Name Last Name Emp ID Dept

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Susan Jones 1001 24

Output 10.1: Output of type.bas

As you can see from the program, using a type definition is a perfect way to group
related data into a single data structure. Not only is it a compact way to describe data in
your program, but by grouping related data into a single object, you can manipulate that
data as a single entity, rather than as a bunch of unrelated variables. This reduces the
chances that errors will creep into your program by trying to manage large a set of
individual variables.

Types Within Types

In addition to the intrinsic data types, type fields can also be based on a type
definition. Why would you want to do this? One reason is data abstraction. The more
general your data structures, the more you can reuse the code in other parts of your
program. The less code you have to write, the less chance of errors finding their way into
your program. Using the Employee example, suppose for a moment that you needed to
track more dept information than just the department id. You might need to keep track of
the department manager, the location of the department, such as the floor or the
building, or the main telephone number of the department. By putting this information
into a separate type definition, you could this information by itself, or as part of another
type definition such as the Employee type. By generalizing your data structures, your
program will be smaller, and much more robust.

Using a type within a type is the same as using on of the intrinsic data types. The
following code snippets illustrates an expanded department type and an updated
employee type.

Type DepartmentType

 119

id As integer

 managerid as integer

 floor as integer

End Type

Type EmployeeType

fname As String * 10

 lname As String * 10

 empid As Integer

 dept As DepartmentType

End Type

Dim Employee As EmployeeType

To access the department information within the Employee type, you use the
compound dot notation to access the dept fields.

Employee.dept.id = 24

Employee.dept.managerid = 1012

Employee.dept.floor = 13

The top levels is Employee, so that reference comes first. Since dept is now a type
definition, you need to use the dept identifier to access the individual fields within the
DepartmentType. You can even carry this further, by including a type within a type within
a type. You would simply use the dot notation of the additional type level as needed.
While there is no limit on the levels of nested type definitions, it gets to be a bit unwieldy
when used with several levels.

You can also use the With-End With block with nested types, by nesting the With
block, as illustrated in the following code snippet.

With Employee

 .fname = "Susan"

 .lname = "Jones"

 .empid = 1001

 With .dept

 .id = 24

 .managerid = 1012

 .floor = 13

 End With

End With

Notice that the second With uses the dot notation, .dept, to specify the next level
of type definitions. When using nested With blocks, be sure that match all the End With
statements with their correct With statements to avoid a compile error.

The following program is a modified version of the previous program illustrating
the new type definitions.

120

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Option Explicit

'Create the type definition

Type DepartmentType

id As Integer

managerid As Integer

floor As Integer

End Type

Type EmployeeType

 fname As String * 10

 lname As String * 10

 empid As Integer

 dept As DepartmentType

End Type

'Create an instance of the type

Dim Employee As EmployeeType

'Initialize the type

With Employee

 .fname = "Susan"

 .lname = "Jones"

 .empid = 1001

 With .dept

 .id = 24

 .managerid = 1012

 .floor = 13

 End With

End With

'Print out header row

Print "First Name";Tab(13);"Last Name";Tab(25);"Emp ID";Tab(33);

Print "Dept";Tab(39);"Manager";Tab(47);"Floor"

Print String(79, "­")

'Print out data

With Employee

 Print Rtrim(.fname);Tab(13);Rtrim(.lname);Tab(24);.empid;Tab(32);

 With .dept

 Print .id;Tab(38);.managerid;Tab(46);.floor

 End With

End With

Sleep

End

 121

Listing 10.2: type-type.bas

Analysis: Lines 4 through 8 define the new type for the department. This is used in
the employee type definition is line 14. The field dept is defined as DepartmentType, in
the same manner as Employee is defined in line 18, with the Dim of course. Line 21
through 30 use two With-End With blocks to initialize the type data. Employee is the first
level type, while .dept, using the dot notation, is the second level type. It is important
that you use the dot notation with the second level With block so that the compiler knows
that you are referring to a type element within Employee. Lines 33 and 34 prints the
header row with the additional department field information. Lines 37 through 42 then
print the type data, again using a nested With block. Notice how using the With blocks
document the type structure without needing any additional comments. While this isn't
the primary reason to use a With block, it does create code that is easily understood. The
program is closed in the usual way.

When you run the program you should see the following output.

First Name Last Name Emp ID Dept Manager Floor

­­

Susan Jones 1001 24 1012 13

Output 10.2: Output of type-type.bas

While it may not be readily apparent from the example, abstracting the data in this
manner gives you a tremendous amount of flexibility in your program. A company will
usually have more than one department, so by abstracting the department information
into a separate type definition, you can create functions that manage the department
information, while at the same time minimizing the impact on the employee data
structure.

Type Assignments

Extending the idea of data abstraction further, it would be nice to be able to
separate the initialization of the department type from the initialization of the employee
type. By separating the two functions, you can easily add additional departments as
needed. This is where you can use type assignments. Just as you can assign one intrinsic
data type to another, you can assign one type variable to another type variable,
providing they share the same type definition.

The following program abstracts the department initialization function and assigns
the result to the department type within the Employee type.

1

2

3

4

5

6

Option Explicit

'Create the type definition

Type DepartmentType

id As Integer

managerid As Integer

122

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

floor As Integer

End Type

Type EmployeeType

 fname As String * 10

 lname As String * 10

 empid As Integer

 dept As DepartmentType

End Type

'This function will init the dept type and return it to caller

Function InitDept(deptid As Integer) As DepartmentType

 Dim tmpDpt As DepartmentType

 Select Case deptid

 Case 24 'dept 24

 With tmpDpt

 .id = deptid

 .managerid = 1012

 .floor = 13

 End With

 Case 48 'dept 48

 With tmpDpt

 .id = deptid

 .managerid = 1024

 .floor = 12

 End With

 Case Else 'In case a bad department id was passed

 With tmpDpt

 .id = 0

 .managerid = 0

 .floor = 0

 End With

 End Select

 'Return the dept info

 Return tmpDpt

End Function

'Create an instance of the type

Dim Employee As EmployeeType

'Initialize the Employee type

With Employee

 .fname = "Susan"

 .lname = "Jones"

 123

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

 .empid = 1001

 .dept = InitDept(24) 'get dept info

End With

'Print out header row

Print "First Name";Tab(13);"Last Name";Tab(25);"Emp ID";Tab(33);

Print "Dept";Tab(39);"Manager";Tab(47);"Floor"

Print String(79, "­")

'Print out data

With Employee

 Print Rtrim(.fname);Tab(13);Rtrim(.lname);Tab(24);.empid;Tab(32);

 With .dept

 Print .id;Tab(38);.managerid;Tab(46);.floor

 End With

End With

Sleep

End

Listing 10.3: type-assign.bas

Analysis: This program is identical to the previous program, with the addition of the
department initialization function in lines 18 through 43. The functions is defined in line
18 as returning the DepartmentType, with one parameter, the department id. Line 19
creates a temporary department type variable that will be initialized with the appropriate
data, and returned from the function. The function uses a Select Case block to set the
data within the temporary type. The Select statement will execute the block of code that
matches the deptid. If no matches are found, the Else case will return a zero for each
element. Since it is probable that no dept will have an id of 0, this value can be checked
to make sure that the passed deptid is valid. The Return statement in line 42 returns the
initialized dept information to the caller.

The function is used in line 53 to set the data values for the department in the
Employee type. Although this program doesn't include a check for an invalid department
id for clarity, you could add a check on the department id following the Employee
initialization code to make sure that a valid department id was used in the function.

The rest of the program is the same as the previous program, and prints the
employee information to the screen.

When you run the program, you should see that the output is identical to the
previous program output.

First Name Last Name Emp ID Dept Manager Floor

­­

Susan Jones 1001 24 1012 13

Output 10.3: Output of type-assign.bas

124

By just adding a simple function to the program, you have made the program
easier to maintain than the previous versions. If a new department is created, you can
simply update the InitDept function with the new department information, recompile and
the program is ready to go.

Pointers to Types

You can create a pointer to a type, just as you can create a pointer to any of the
intrinsic data types, and the same rules apply. As with any pointer, you must allocate
some memory for the pointer, dereference the data elements, and deallocate the pointer
when you are done using it. Type pointers use the arrow notation, ->, rather than the dot
notation to access the individual fields with a type.

In the previous program listing, the error checking on an invalid department id was
clunky at best. A better method is to have the InitDept function return a success code
that indicates a valid department id. The following program implements this strategy,
and uses a DepartmentType pointer to hold the department information for the Employee
type.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Option Explicit

#define deptok 0

'Create the type definition

Type DepartmentType

id As Integer

managerid As Integer

floor As Integer

End Type

Type EmployeeType

 fname As String * 10

 lname As String * 10

 empid As Integer

 dept As DepartmentType

End Type

'This function will init the dept type and return it to caller

Function InitDept(deptid As Integer, dpt As DepartmentType Ptr) As Integer

 Dim ret As Integer = deptok

 Select Case deptid

 Case 24 'dept 24

 dpt­>id = deptid

 dpt­>managerid = 1012

 dpt­>floor = 13

 Case 48 'dept 48

 125

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

 dpt­>id = deptid

 dpt­>managerid = 1024

 dpt­>floor = 12

 Case Else 'In case a bad department id was passed

 dpt­>id = 0

 dpt­>managerid = 0

 dpt­>floor = 0

 ret = Not deptok

 End Select

 'Return the dept status

 Return ret

End Function

'Create an instance of the types

Dim Employee As EmployeeType

Dim tmpDept As DepartmentType Ptr

'Initialize the pointer

tmpDept = Callocate(Sizeof(DepartmentType))

'Get the department info, check return

If InitDept(24, tmpDept) <> deptok Then

 'Error on dept type

 Deallocate tmpDept

 Print "Invalid Department ID."

Else

 'Department ok, init the Employee type

 With Employee

 .fname = "Susan"

 .lname = "Jones"

 .empid = 1001

 .dept = *tmpDept 'Dereference the pointer

 End With

 'Don't need the dept info now

 Deallocate tmpDept

 'Print out header row

 Print "First Name";Tab(13);"Last Name";Tab(25);"Emp ID";Tab(33);

 Print "Dept";Tab(39);"Manager";Tab(47);"Floor"

 Print String(79, "­")

 'Print out data

 With Employee

 Print Rtrim(.fname);Tab(13);Rtrim(.lname);Tab(24);.empid;Tab(32);

 With .dept

 Print .id;Tab(38);.managerid;Tab(46);.floor

 End With

 End With

126

74

75

76

77

End If

Sleep

End

Listing 10.4: type-ptr.bas

Analysis: This version of the program has a few modifications from the previous
versions, but overall it is the same program. Line 3 defines a return for the InitDept
function. If the functions returns this code, the department id is valid; if the function does
not return this code, the department id is invalid. The type definitions are the same as
used previously, but the function in line 20 has changed.

The function now returns an integer value, and there are two parameters, a
department id and a pointer to the DepartmentType. Line 21 dimensions and initializes
the function return value to deptok. If there are not errors, this value will be returned. If
the deptid is invalid, the Case Else will set the return value to Not deptok (-1) in line 36.
This is a good technique to return boolean values from a function. By initializing the
return variable to the “ok” status, you only need to set the variable to the “not ok” status,
if an error occurs. Less typing, less code and fewer chances of introducing bugs into the
program.

In the individual Case blocks, the arrow notation is used to access the individual
fields of the type pointer. The -> automatically dereferences the pointer for you, making
it easier to manipulate the individual fields within the type. Line 39 returns the success
code of the function. You don't need to return any type information, because the function
is actually updating the external department type variable through the pointer.

Line 44 dimensions a DepartmentType pointer. Which is initialized in line 47.
Remember that Callocate allocates a memory segment, clears the segment and then
returns the address of the segment which is stored in the variable tmpDept. In line 49 the
InitDept function is called inside an If statement. If the function fails, that is returns Not
deptok, then the program deallocates the pointer and prints an error message. If the
function succeeds, that is returns deptok, then the Employee type is initialized and the
data is printed to the screen. Notice in line 59 that the program is still using a type
assignment, but because tmpDept is a pointer, the dereference operator must be used.

Line 62 shows the power of using pointers as intermediate data structures. Once
the department data is in the Employee type, you don't need the department type
reference. Line 62 deallocates tmpDept, freeing the memory it was using. There is no
sense in wasting memory on data structures that you only use for a very short time.

The rest of the program is identical to the previous programs.

When you run this program you should again see the same output as the previous
programs.

 127

First Name Last Name Emp ID Dept Manager Floor

­­

Susan Jones 1001 24 1012 13

Output 10.4: Output of type-ptr.bas

This change, like the previous change, was minor—most of the original program is
in intact—but the program is now much more robust, easier to manage, and less prone to
error than the original program. The fact that the output has not changed even though
the program has, is a good indicator that the changes that were made were did not
create unwanted side effects in the program. This is what data abstraction does;
minimize negative impacts on existing code.

Type Memory Arrays

In the chapter on pointers, you saw how to create a memory array of integers
using pointers. You can do the same with Type definitions, in much the same way. The
following program creates a dynamic memory array using a type.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Option Explicit

'Declare type

Type myType

 id As Integer

End Type

'Declare a pointer to the type

Dim myTypePtr As myType Ptr

Dim As Integer i

'Create a memory array of types

myTypePtr = Callocate(5, Sizeof(myType))

'Add some data to the type

For i = 0 To 4

 myTypePtr[i].id = i

Next

'Print data

Print "Initial data:"

For i = 0 To 4

 Print myTypePtr[i].id

Next

Print

'Resize the array

myTypePtr = Reallocate(myTypePtr, 10)

128

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

'Add the new data

For i = 4 To 9

 myTypePtr[i].id = i

Next

'Print data

Print "New Data:"

For i = 0 To 9

 Print myTypePtr[i].id

Next

'Release memory

Deallocate myTypeptr

Sleep

End

Listing 10.5: memtype.bas

Analysis: Lines 4 through 6 declare a simple type. Line 9 dimensions a pointer to
myType, and line 10 creates an integer variable i for the following For-Next loops. Line 13
allocates memory for 5 myType entries in the memory array. Lines 16 through 19
initialize the individual type elements. Notice the syntax is
type_variable[index].field_name. Since myTypePtr is a typed pointer, you can use the
index method to access each element in the array. You then use the dot notation to
access each individual field of the type, just as you would using a single type variable.
Lines 21 through 25 print the data to the screen using the same pointer index method.

Line 28 resizes the memory array with an additional 5 type elements. Lines 31
through 33 initialize the new memory segment with data, and lines 26 through 39 print
the all the data to the screen. Line 42 deallocates the memory and the program is closed
in the usual way.

When you run the program you should the following output.

Initial data:

 0

 1

 2

 3

 4

New Data:

 129

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Output 10.5: Output of memtype.bas

As you can see, creating a memory array of types is very straight forward. You
create the number of elements you need by using Callocate and then using the index
pointer method, you can access each individual type field using the dot notation. The
advantage of using this method is that you can create dynamic structures in memory and
grow or shrink them as necessary so that you are not wasting memory on elements you
may not need. You can of course create a standard array of types, which will be covered
in the chapter on arrays, and you can even create a dynamic array of types—but the
method shown here does not incur the overhead of a dynamic array, and can be passed
to functions using the pointer method.

Dynamic Arrays in Types

FreeBasic does allow you you to create an array within a type, which is covered in
the chapter on arrays, but it does not allow you to create dynamic arrays in types. There
are times when you will need to create a dynamic structure in a type, and this can be
accomplished by using memory array method within a type. The following program
illustrates a dynamic array of a type within a type.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Option Explicit

'This will be the dynamic type

Type pt

 row As Integer

 col As Integer

End Type

'The base type:

'darray will contain array data

Type DType

 darray As pt Ptr

End Type

'Create an instance of type

130

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Dim myType As DType

Dim As Integer i

'Create enough space for elements

myType.darray = Callocate(5, Sizeof(pt))

'Load data into array

For i = 0 To 4

 myType.darray[i].row = Int(Rnd * 10) + 1

 myType.darray[i].col = Int(Rnd * 10) + 1

Next

'Print data

For i = 0 To 4

 Locate myType.darray[i].row, myType.darray[i].col

 Print "X"

Next

'Free allocated space

Deallocate myType.darray

Sleep

End

Listing 10.6: dynatype.bas

Analysis: Lines 4 through 7 define a type that will be used in the dynamic array.
The program will use the row and column to print a character to the screen. Lines 11
through 13 define the base type. Notice that darray is dimensioned as a pointer to the
type pt. If you needed an array of integers, you would use As Integer Ptr. The methods
are the same whether using an intrinsic data type, or another type as illustrated here.
Line 20 allocates memory for 5 array elements. Since the program is creating an array of
types, the second parameter to Callocate is the size of the type, pt. For an integer array it
would be Sizeof(Integer). Lines 23 through 26 initialize the type array with a random
row and column which will be used within the print code that follows. The access syntax
in lines 24 and 25 follow what you have already seen; the dot notation is used to access
the base type field darray, which is then accessed using the pointer indexing method,
since the program is using a typed pointer. The dot notation is then used to access the
individual fields of the array type. The syntax is the same as that shown with the type
memory array, except here you have one additional level of indirection because the array
is contained within a type.

Lines 29 through 32 use the row and column fields to print an X to the screen.
Again you can see that the dot notation and pointer index methods are used to access
the fields within the type. Line 35 frees the memory allocated and the program is closed
in the usual way.

 131

When you run the program you should see something similar to the following
output.

 X

 X

 X

 X

 X

Output 10.6: Output of dynatype.bas

The location of the X's will vary since the rows and columns are generated
randomly, but since Randomize is not being used, you should the same layout between
runs.

The two previous programs are quite similar in format. The differences are the
levels of indirection being used. In the memory array program, the type itself was being
used as the array element, so the pointer index was used at the top level, with the dot
notation used to access the field data. In this program, the memory array is embedded
within the type, so you use the standard dot notation to access the base type field,
darray, and then use the pointer index method on the field to select the array element.
Since the array element is a type, you use the dot notation to access the array element
field, just as you would as if it were a simple type variable.

You could of course create a memory array that contained a memory array. In this
case, you would use the pointer index method to select the base type element, and then
the dot notation to select the memory array field, then a pointer index to access the
element within the embedded array, and finally the dot notation to select the array
element field. It sounds complicated, but is actually easier to implement than it is to
explain. The following program modifies the previous program to illustrate this concept.

1

2

3

4

5

6

7

8

9

10

11

12

Option Explicit

'This will be the embedded type

Type pt

 row As Integer

 col As Integer

End Type

'The base type:

'darray will contain array data

Type DType

 darray As pt Ptr

132

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

End Type

'Create a pointer to base type

Dim myType As DType Ptr

Dim As Integer i, j

'Set up random number generator

Randomize Timer

'Create enough space for 3 base type elements

myType = Callocate(3, Sizeof(Dtype))

'Create space for 3 pt elements within base type

For i = 0 To 2

 myType[i].darray = Callocate(3, Sizeof(pt))

Next

'Load data within the type arrays

For i = 0 To 2

 For j = 0 To 2

 myType[i].darray[j].row = Int(Rnd * 10) + 1

 myType[i].darray[j].col = Int(Rnd * 10) + 1

 Next

Next

'Print data

For i = 0 To 2

 For j = 0 To 2

 Locate myType[i].darray[j].row, myType[i].darray[j].col

 Print "X"

 Next

Next

'Free embedded type array

For i = 0 To 2

 Deallocate myType[i].darray

Next

'Free base type array

Deallocate myType

Sleep

End

Listing 10.7: dyna-type2.bas

Analysis: Line 4 through 7 define the type that that will be an array within the base
type. Lines 11 through 13 define the base type. Darray is dimensioned as a pointer to the

 133

type pt since this will be a memory array with the base type. Line 16 defines a pointer to
the base type, Dtype, since the base type will also be a memory array. Line 17 defines
two working variables, i and j, which will be used in the For-Next loops to create and load
data within the types. Line 20 initializes the random number generator.

Line 23 creates a three-element memory using the base type. Lines 25 through 27
then create a three-element memory array using the subtype, pt, for each base type
element. Notice that the base type, myType is indexed using the pointer index method
since it is a pointer, and each darray element is initialized using Callocate, since darray is
also a pointer. Lines 30 through 35 load data into the memory array elements row and
column. The outer For loop indexes the base type pointer, while the inner loop indexes
the darray type pointer. Since darray is an element of myType, darray is selected using
the dot notation, and since row and col are elements of daray, these are selected using
the dot notation.

Lines 38 through 43 use the same logic to print the X's on the screen. The outer
loop selects the base type pointer, while the inner loop selects the embedded pointer.
The row and col elements of darray are used in the Locate statement to move the cursor
to the position described by the row and col variables, and an X is printed to the screen.

Lines 46 through 48 deallocate the darray memory array. The order of deallocation
is important here. You must deallocate the embedded array first, before you deallocate
the base type array. If you deallocate the base type array without deallocating the
embedded array, the embedded array elements will remain in memory causing a
memory leak. The rule of thumb here is to deallocate the inner most pointer elements
first, and then work out toward the base pointer element. Line 50 deallocates the base
type elements, only after the darray elements have been deallocated. The program is
then closed in the usual way.

When you run the program you should see something similar to the following
output. There should be nine X's, however since the random number generator is working
within a 10 by 10 space, it is possible two X's may occupy the same row and column, so
you may not see all nine X's.

 X X

 X X

 X

 X

 X X

 X

Output 10.7: Output of dyna-type2.bas

134

While this may seem confusing at first, if you look at the code you will see a
recurring pattern. The pointer elements are selected using the pointer index method,
followed by the dot notation to select the individual type elements. You start with the
base type, in this case myType, index the pointer, and then select the elements using the
dot notation, in this case darray. Since darray is a pointer, it is selected using a pointer
index, followed by the dot notation to select the row and col elements. The pattern,
pointer index, dot notation, pointer index, dot notation would be used for as many levels
as needed to resolve a individual element within the memory array.

The following diagram shows the memory layout of the program.

MyType[0] ­> .darray[0] ­> .row, .col

.darray[1] ­> .row, .col

.darray[2] ­> .row, .col

MyType[1] ­> .darray[0] ­> .row, .col

.darray[1] ­> .row, .col

.darray[2] ­> .row, .col

MyType[2] ­> .darray[0] ­> .row, .col

.darray[1] ­> .row, .col

.darray[2] ­> .row, .col

You can see the pattern reflected in the diagram. If row were a type pointer, then
you would just repeat the pattern of index, dot notation on row to resolve the next level
of elements. This type of data structure gives you a lot of flexibility in your programming.
There is no need to have three darray elements for each base element; myType[0] may
point to 4 elements and myType[2] may point to 1 element. You would need to add an
additional field in myType to indicate how many darray elements were each myType
element, but that is a minor adjustment and easily programmed. What this concept gives
you is tight control over your data structures, efficient use of memory and at a relatively
low cost in code.

Function Pointers in Types

Once you have created a type definition, you will usually need to create one or
more subroutines or functions that act on that data. By using function pointers, you can
group the code that acts on this data right along with the data itself. This gives you a
powerful capability to organize your data into code objects that operate as a single unit.
This is one of the ideas behind OOP, or object oriented programming; encapsulating data
and the methods (subroutines and functions) that operate on that data into a single
entity. While FreeBasic doesn't yet support object oriented programming, you can derive
some of the benefits of OOP by using functions pointers along with data when you create
your type definitions.

You define a function (or subroutine) pointer by declaring a prototype function
declaration with the type element name. The following code snippet shows a typical
declaration.

Type myObject

arg1 As Integer

arg2 As Integer

ret As Integer

 135

myFunc As Function(arg1 As Integer, arg2 As Integer) As Integer

End Type

Declare Function typeFunc(arg1 As Integer, arg2 As Integer) As Integer

...

Dim Obj as myObject

Obj.myFunc = @typeFunc

...

Function typeFunc(arg1 As Integer, arg2 As Integer) As Integer

...

End Function

The type definition is defined using data in the normal manner, along with a field,
myFunc, that is defined As Function. When a field is defined As Function or As Sub, this
creates a pointer to the function or subroutine. Notice that the type definition of myFunc
doesn't include a function, but does include the parameter and return types. Since this is
a pointer field, the name isn't required, but the parameters and return type in the
prototype declaration, must match the actual function in order for the compiler to do type
checking on the pointer field.

The Declare statement following the type is needed as a forward reference so that
the compiler knows that a function is defined somewhere in the code. If you left out the
declaration, you would get a variable not declared error when trying the to compile the
code. You create an instance of the type using the Dim statement, just as you have seen
in the other examples. Since myFunc is a pointer, you can't use it until you initialize the
pointer and you do this by using the Addressof operator on the real function's name. This
will store the address of the function in myFunc, which is used when calling the function.
The real function must be coded of course, so that you actually have some code to call
when using the function pointer.

The following program illustrates creating and using a function pointer in a type
def.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Option Explicit

'Create a type definition that has data and function ptr

Type myObject

arg1 As Integer

arg2 As Integer

ret As Integer

myFunc As Function(arg1 As Integer, arg2 As Integer) As Integer

End Type

'Need to declare function for forward reference

Declare Function typeFunc(arg1 As Integer, arg2 As Integer) As Integer

'Create a type variable

Dim Obj As myObject

'Set the address of the function

Obj.myFunc = @typeFunc

136

17

18

19

20

21

22

23

24

25

26

27

28

29

'Set the data elements

Obj.arg1 = 1

Obj.arg2 = 5

'Call the function

Obj.ret = Obj.myFunc(obj.arg1, Obj.arg2)

'Show result

Print "Func return is";Obj.ret

Sleep

End

Function typeFunc(arg1 As Integer, arg2 As Integer) As Integer

Return arg1 + arg2

End Function

Listing 10.8: type-func.bas

Analysis: Lines 4 through 9 define a type with both integer data fields and a
function pointer field. MyFunc is defined As Function along with the function prototype.
This sets up myFunc as a function pointer. The Declaration statement in line 12 is used as
a forward reference to the actual function code. If you did not supply the declaration, you
would get a variable not found error on line 16. Line 14 creates a variable of the type
and line 16 uses the Addressof operator to initialize the function pointer to the address of
typeFunc, the actual function. Lines 18 and 19 initialize the data fields, arg1 and arg2.
Line 21 actually calls the function with the proper arguments. Notice that the dot notation
is used in calling the function, myFunc as well as passing the data to the function. Obj.ret
olds the functions return value.

The program is closed using the Sleep and End commands, followed by the
function definition. Whenever you create a function pointer, you must have some
corresponding function code in order to pass the address of that code to the function
pointer.

When you run the program, you should see the following output.

 Func return is 6

Output 10.8: Output of type-func.bas

As you can see, function pointers are quite simple to define and use. Not only is
your data encapsulated within a single code object, the methods that act on that data are
also contained within that same object, giving you a powerful way to organize your data
structures. The example program is quite simple of course, but you can use this concept
to reduce the complexity of your code. Suppose you are writing a game and the enemy
units have been defined using a type definition. By also including the subroutines or
functions that act on that data within the type definition, you have a single code object
that fully describes an enemy. If you need to make changes to the enemy code, you only

 137

have to update a single code object, rather than a scattered bunch of variables and
subroutines.

This method also enables you to pass information to functions or subroutines as a
single unit, by simply declaring a parameter as the type definition, and you have access
to both the data and methods within the called function. This makes the code much more
reliable and easier to maintain. It also enables you to generalize the code so that when
you create these type of objects, they can be used in other programs.

Forward References

There may be a time when you need to create two type definitions that reference
each other. Since FreeBasic is a single pass compiler, this poses a problem since the
compiler will encounter a reference to a type that hasn't been defined yet. The solution is
to create a forward reference of the second type. You do this by using the Type-As
keywords, without the End Type. For example, suppose you have two types Type1 and
Type2. Type1 references Type2 and Type2 references Type1. It doesn't matter what order
you define the types, you will generate an error in the compiler, because each type has a
reference that hasn't been defined yet. In order for the compiler to compile successfully
you need to create a forward reference to the second type, and then use that reference
in defining the first type. The following code snippet illustrates this concept.

'Forward reference

Type FT as Type2

Type Type1

 fType as FT

End Type

Type Type2

 fType as Type2

End Type

The code Type FT as Type2 creates the forward reference that is in turn used in
the Type1 definition to refer to Type2, fType as FT. FT and Type2 are actually the same
thing, FT is just an alias for the Type2 definition. Whenever you need to have one or mote
type definitions refer to each other, you will need to create forward declarations for the
the types that have not been defined when referenced.

Bit Fields

There is yet another data type that can be used in type definitions, the bit field. Bit
fields are defined as variable_name: bits As DataType. The variable name must be
followed with a colon and the number of bits, followed by the data type. Only integer
data types are allowed within a bit field. Bit fields are useful when you need to keep track
of boolean type information, such as if a pixel is on or off. The following program
illustrates using bit fields within a type definition.

1

2

Option Explicit

138

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Type BitType

 b1: 1 As Integer

 b2: 4 As Integer

End Type

Dim myBitType As BitType

myBitType.b1 = 1

myBitType.b2 = 1101

Print "Bit field 1: ";myBitType.b1

Print "Bit field 2: ";myBitType.b2

Sleep

End

Listing 10.9: bitfield.bas

Analysis: Lines 3 through 6 define a type with two bit fields. B1 is defined as 1 bit,
and b2 is defined as 4 bits. Line 8 creates a variable of the type definition. Line 10 sets
b1 to 1. Since b1 is defined a 1 bit, the only valid values are 0 or 1. Line 11 sets b2 to
1101. Here there are four bits so you can have a range of 0000 to 1111. Lines 13 and 14
print out the values of the bits. The program is closed in the usual way.

When you run the program you should see the following output.

Bit field 1: 1

Bit field 2: 13

Output 10.9: Output of bitfield.bas

The data type of the bit field determines how many bits you can declare in a bit
field. Since an integer is 32 bits long, you could declare up to 32 bits in the field.
However, in most cases you would declare a single bit for each field, and use a number of
fields to define the bit masking that you wish to use. Using a single bit simplifies the
coding you need to do to determine if a bit is set or cleared.

The Field Property

When you create a variable of a type definition, the type is padded in memory. The
padding allows for faster access of the type members since the type fields are aligned on
a 4 byte or Word boundary. However, this can cause problems when trying to read a type
record from a file that is not padded. You can use the use field property to change the
padding of a type definition. The field keyword is used right after the type name and can
have the values 1, for 1 byte alignment (no padding), 2 for 2 byte alignment and 4 for 4
byte alignment. To define a type with no padding you would use the following syntax.

 139

Type myType field = 1

 v1 As Integer

v2 As Byte

End Type

For 2 byte alignment you would use field = 2. If no field = property is assigned,
then the padding will be 4 bytes. If you are reading a type definition created by FreeBasic
using the default alignment, then you do not need to use the field property.

If you reading a Quick Basic type record, then you will need to use field = 1, as QB used
byte alignment by default.

Type Initialization

You can initialize a type definition when you dimension the type just as you can
any of the intrinsic variables. The following code snippet illustrates the syntax.

Type aType

 a As Integer

 b As Byte

 c As String

End Type

Dim myType As aType => (12345, 12, "Hello")

In the Dim statement, the arrow operator is used to signal the compiler that you
are initializing the type variable. The type element values must be enclosed in
parenthesis, and separated by commas. The order of the value list corresponds to the
order of the type elements, where a will be set to 12345, b to 12 and c to “Hello”. The
following short program initializes a type using this syntax.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Option Explicit

'Create a type def

Type aType

 a As Integer

 b As Byte

 c As String

End Type

'Create and init the type

Dim myType As aType => (12345, 12, "Hello")

'Display values

With myType

140

15

16

17

18

19

20

21

 Print .a

 Print .b

 Print .c

End With

Sleep

End

Listing 10.10: type-init.bas

Analysis: Lines 4 through 8 define a type definition. Line 11 dimensions the type
variable and sets the filed elements to the listed values. The order of the values
correspond to the order of the field elements. Line 14 through 18 prints the type values
to the screen. The program is then closed in the usual way.

When you run the program you should the following output.

 12345

 12

Hello

Output 10.10: Output of type-init.bas

Initializing a type definition in a Dim statement is useful when you need to have a
set of initial values for a type, or values that will not change during program execution.
Since the values are known at compile time, the compiler can doesn't have to spend
cycles loading the values during runtime.

Unions

Unions look similar to Types in their definition.

Union aUnion

b As Byte

s As Short

i As Integer

End Union

If this were a Type, you could access each field within the definition. For a Union,
you can only access one field at any given time; all the fields within a Union occupy the
same memory segment, and the size of the Union is the size of the largest member. In
this case, the Union would occupy four bytes, the size of an Integer, with the b field
occupying 1 byte and the s field occupying 2 bytes within the 4 byte integer space. Each
field starts at the first byte, so the s field would include the b field, and the i field would
include both the b field and the s field. The following program illustrates this concept.

 141

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Option Explicit

'Define a union

Union aUnion

 b As Byte

 s As Short

 i As Integer

End Union

Dim myUnion As aUnion

'Set the integer value

myUnion.i = 2047483641

'Print members

Print "Integer: ";Tab(10);Bin(myUnion.i)

Print "Byte: ";Tab(33);Bin(myUnion.b)

Print "Short: ";Tab(28);Bin(myUnion.s)

Sleep

End

Listing 10.11: union.bas

Analysis: Line 4 through 8 define the example union. Line 10 defines a variable of
the union definition. Line 13 sets the integer field to a value that will overlap the b and s
fields. Lines 15 through 17 print out the values of each field of the union in binary so that
you can see the overlap of the values. The program is closed in the usual way.

When you run the program you should the following output.

Integer: 1111010000010100001111011111001

Byte: 11111001

Short: 1111011111001

Output 10.11: Output of union.bas

You can easily see the overlapped values in the output. While a union is useful on
its own, you can combine a union with a type definition to create extremely flexible and
efficient data structures.

Types in Unions

A good example of using a type definition in a union is the Large_Integer definition
found in winnt.bi. The Large_Integer data type is used in a number of Windows functions
within the C Runtime Library. The following code snippet shows the Large_Integer
definition.

142

union LARGE_INTEGER

type

LowPart as DWORD

HighPart as LONG

end type

QuadPart as LONGLONG

end union

The Dword data type is defined in windef.bi as an Uinteger, type DWORD as
uinteger, and the Longlong type is defined as a Longint, type LONGLONG as longint. A
Long is the same as an integer. Remember that a type occupies contiguous memory
locations, so the HighPart field follows the LoPwart part field in memory, the type
occupies the same memory segment as the QuadPart field. When you set QuardPart to a
large integer value, you are also setting the values of the type fields, which you can then
extract as the LowPart and HighPart. You can also do the reverse, that is by setting the
LowPart and HighPart of the type, you are setting the value of the QuadPart field.

As you can see, using a type within a union is an easy way to set or retrieve
individual values of a component data type without resorting to a lot of conversion code.
The layout of the memory segments does the conversion for you, providing that the
memory segments make sense within the context of the component type. In the
Large_Integer case, the LowPart and HighPart have been defined to return the
appropriate component values. Using values other than Dword and Long would not return
correct values for LowPart and HighPart. You need to make sure when defining a type
within a union, you are segmenting the union memory segment correctly within the type
definition.

Unions in Types

A union within a type definition is an efficient way to manage data when one field
within a type can only be a single value. The most common example of this is the Variant
data type found in other programing languages.

FreeBasic does not have a Variant data type at this time. However, when classes are
added to FreeBasic, it will be quite easy to create a Variant data type and overload the
arithmetic operators to create a Variant that behaves just like the intrinsic data types.
Classes are planned for a future version of FreeBasic.

If you can only access a single field within a union, how do you know which field to
access when a union is contained within a type definition? Usually you will include an
identifier field within the type, but outside the union, that identifies which union field to
access. The following program illustrates this concept by creating a simple Variant data
type.

1

2

3

4

Option Explicit

'Union field ids

#define vString 0

 143

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

#define vInteger 1

'Define type def with variable data fields

Type vType

 vt_id As Integer

 Union

 s As String

 i As Integer

 End Union

End Type

'Create variant variable

Dim myVariant As vType

'This subroutine prints out value

Sub PrintVariant(v As vType)

 If v.vt_id = vString Then

 Print "String value: ";v.s

 Elseif v.vt_id = vInteger Then

 Print "Integer value:";v.i

 End If

End Sub

'Set the id to a string

myVariant.vt_id = vString

myVariant.s = "This is a string."

'Print the string value

PrintVariant myVariant

'Clear the string memory before seting the integer

myVariant.s = ""

'Set the id to an integer

myVariant.vt_id = vInteger

myVariant.i = 300

'Print the integer value

PrintVariant myVariant

Sleep

End

Listing 10.12: simplevariant.bas

Analysis: Line 4 and 5 define the union ids. These values will be used to determine
which field within the union to access. Lines 20 through 26 define a subroutine that will
print the value of the union field based on the id. If the id field is VString, then the s field
within the union is printed. If the id field is VInteger, then the i field is printed. Line 29
sets the id field to Vstring and line 30 sets the union field s to a string. The PrintVariant

144

subroutine is called in line 32 to print out the value. Line 34 clears the allocated memory
of the dynamic string by setting the union field s to an empty string.

Line 36 sets the id field to an integer, and the value of the union field i is set to
300. Line 39 calls the PrintVariant subroutine to print the integer value. The program is
then closed in the usual way.

Caution There are two subtle danger in this program that may not be readily
apparent. Remember that a dynamic string is actually a pointer to an allocated memory
segment. The union field s is actually a pointer to this memory segment. Since the fields
s and i overlap in memory, setting i to a value also sets s to a value; that is, in the
program i is set to 300, which also sets s to 300. Since s is a pointer, trying to access s
after setting i will access memory location 300, which will be garbage data and may
cause the program to crash.

The other problem with this program is that it can potentially lead to a memory
leak while the program is running. The string value is an allocated memory segment.
Setting the integer value, overwrites the pointer address in s, which means you have lost
the pointer address to the memory segment. The string data still exists in memory, but
now that data is lost, causing a memory leak. This is why the string value in the union
was set to an empty string before setting the integer value. Setting the string value to an
empty string deallocates the string data and frees the string pointer.

When using pointers within a union, great care must be taken to insure that the
pointer is pointing to the correct memory location, and that they are deallocated correctly
to prevent memory leaks.

When you run the program you should see the following output.

String value: This is a string.

Integer value: 300

Output 10.12: Output of simplevariant.bas

Using a combination of unions and types within a program allows to design custom
data types that have a lot of flexibility, but care must be taken to ensure that you are
using the data constructs correctly. Improper use of these data types can lead to hard-to-
find bugs. The benefits however, out-weigh the risks and once mastered, are a powerful
programming skill.

A Look Ahead

There are times when you will need values that do not change during a program.
These values are called Symbolic Constants and are the subject of the next chapter.

 145

11 Symbolic Constants

Constants are values that do not change during the life of the program. Constants
are like variables in that the name of the constant refers to the defined value, but unlike
a variable, these values cannot be changed in the program. There are two important
reasons why constants should be used in your program. One, they help to document the
program. Suppose in your role-playing game you have a weapon such as a broadsword. If
you define the broadsword as a constant, which you can do with #Define broadsword
12, you can then refer to the weapon id as broadsword, rather than 12. The number 12
imparts no real information when you see it in the code; broadsword on the the other
hand is quite clear and understandable.

The second reason to use a constant is code maintenance. There may come a time
when working on your role-playing game that you need to change the value of the
broadsword id. If you have defined the id as a constant, you only need to change it in a
single location, the place where you defined the constant. If you had just used the
number 12, you would have to search through the code and change each instance where
12 referred to the broadsword. If the program is of any length at all, you will probably
miss a reference or two, introducing bugs into your program. Bugs that may be difficult to
locate and fix.

One of the things you will discover as you progress in your programming adventure is
that programs are dynamic, not static. There is always a new technique being
developed that you can use, a new compiler function that will improve your program,
and bugs that need to be fixed. The only thing that stays the same in a program is the
fact that programs continually evolve over time. You should always keep in mind that
when you write a program, you will probably end up making changes to the program,
and you should code accordingly. It may be easier to write 12 than it is to write
broadsword, but a few extra seconds of typing will save you hours when you need to
change 12 to 120.

#Define as a Constant

You have already seen #Define at work in several of the example programs.
#Define is a preprocessor command, where the defined symbol is physically replaced in
the code by the associated value. #Define of course is used in a number of situations,
from creating macros to conditional compilation, but it is also useful for creating
constants within your program. If you look through the declaration files in the include
folder of your FreeBasic installation, you will see that #Define is used extensively for
constant values. Since the compiler replaces the symbol definition with the defined
value, it is a very efficient coding method. It is also quite easy to use, as the following
code snippet illustrates.

'Define directions

#Define north 1

#Define neast 2

#Define east 3

#Define seast 4

146

#Define south 5

#Define west 6

#Define swest 7

#Define nwest 8

Once you define the constants, you can use the symbols in your programs just as
you would the values. You have already seen this technique used in some of the example
programs presented in the book.

The Const Keyword

The Const keyword is another method to define constants in your program. The
format is similar to the #define, as the following code snippet illustrates.

Const xk = Chr(255)

Const key_up = xk & Chr(72)

Const key_dn = xk & Chr(80)

Const key_rt = xk & Chr(77)

Const key_lt = xk & Chr(75)

These constants are the character codes returned by Inkey for the arrow keys.
Inkey returns a two byte string for the extended keys, Chr(255) + the extended key
character code. Inkey is covered in detail in the chapter on Console Programming. To use
these constaints in your program you would just use key_lt for example to check to see if
the left arrow key had been pressed.

Const Versus #Define

As you can see Const and #Define are similar constructs. The question then
becomes, which one should you use? Remember that #Define replaces the symbol name
with the text following the symbol. If you wrote #Define key_up xk & Chr(72), then
the code xk & Chr(72) would be replace the symbol key_up. If you had several places
where you used key_up, then there would be several instances of xk & Chr(72) in your
program. You can see that by using #Define in this case your program would be
performing the same calculation over and over. It is much more efficient to use Const in
this case, since the calculation is only done once, when the Const is defined.

On the other hand, if you are defining single constant values, such as compass
directions, then using a #Define is preferable to using Const. For a Const value, the
compiler must do a lookup in the symbol table and it is much more efficient to simple
replace the symbol with the value using #Define.

Enumerations

Enumerations are sequential values that the compiler can calculate for you. To
create an enumeration, you use enclose the values within an Enum-End Enum block. The
compass direction defined above could also be defined as an enumeration.

Enum compass

north = 1

 147

neast

east

seast

south

west

swest

nwest

End Enum

In this example, neast will be defined as 2, with east defined as 3 and so on. If no
starting value is set, enumerations start at 0. You can also change the sequence within an
enumeration by setting a symbol to a value using =, and any following symbols will be
incremented from this starting point.

Enum compass

north = 1

east

south

west

neast = 10

seast

swest

nwest

End Enum

In this example, the value of seast will be 11, swest will be 12 and so on. Once you
define an enumeration, you can create variables of the Enum and use that variable within
your program.

Dim aCompass as compass

You can then use the enumeration values to initialize the variable. The following
code snippet set aCompass to the north-defined value.

aCompass = north

Caution The compiler does not check to see if the value being passed to the Enum
variable is within the defined range of the enumeration. It is the responsibility of the
programmer to ensure that the Enum variable contains the correct values.

A Look Ahead

In the next chapter you will see how to create and work with Arrays in FreeBasic.

148

 149

12 Arrays

Arrays are probably the single most useful programming construct that is
available to you in FreeBasic. Many problems that you will try to solve with a
programming solution involve data arranged in tabular format, and arrays are perfect for
managing this type of data. Understanding arrays is crucial skill in becoming a competent
programmer.

Arrays are contiguous memory segments of a single or composite data type. You
can think of an array as a table, with rows and columns of data. An array can have one or
more rows, and each row can have one or columns. The number of rows and columns
define the dimensions of the array. FreeBasic uses the row-major scheme for arrays,
which means that the first dimension references the row in an array that has more than
one dimension. FreeBasic supports up to eight dimensions in an array.

One-Dimensional Arrays

An array with a single row is called a one-dimensional array. If an array is a single-
dimensional array, then the row is not defined in the declaration, only the number of
columns in the row. Since an array requires a minimum of one row, the row is understood
to exist in this case. The following code snippets create a single-dimension integer array
using the different array definition schemes available in FreeBasic.

Dim myArray(10) as Integer

This will define an array with a single row and 11 columns, with column indexes
(numbers) ranging from 0 to 10. The base array index is 0 if the lower bound of the array
is not defined. This behavior can be changed using the Option Base n compiler
directive. Setting Option Base 1 with the above example would result in an array with 10
columns, with the indexes ranging from 1 to 10. The Option Base directive must be
defined before dimensioning any arrays.

Dim myArray(1 to 10) as Integer

This example will define a single-dimension array with 10 columns, with indexes
ranging from 1 to 10.

One-Dimensional Array Indexes

You access each element of an array using an index value. In the case of a single-
dimension array, the index would refer to a column number in the default row. The format
is to use the array variable, with the index surrounded by parenthesis.

myArray(5) = 7

This would set the value of column 5 of myArray to 7.

150

myInt = myArray(5)

This will set the value of myInt to the current value of column 5 in myArray.

Two-Dimensional Arrays

A two-dimensional array is an array that has more than one row, along with the
defined columns. A two-dimensional array is like a table, with a defined number of rows,
where each row has a defined number of columns. The following code snippet defined an
array using the default method.

Dim myArray(2, 10) as Integer

The first dimension defines the number of rows in the array, while the second
dimension defines the number of columns in each row. In this example, the array has 3
rows, numbered 0 to 2, and each row has 11 columns, numbered 0 to 10, if Option Base
has not been defined. If Option Base 1 had been used, then the row indexes would range
from 1 to 2, and the column indexes would range from 1 to 10.

You can also define the lower and upper bounds of the array.

Dim myArray(1 to 2, 1 to 10) as Integer

This definition would set the number of rows to 2, numbered 1 to 2 and the
number of columns to 10, numbered 1 to 10.

Two-Dimensional Array Indexes

To access the array elements you would use two indexes. The first index selects
the row, and the second index selects a column within that row.

myArray(1, 5) = 7

This code would set column 5 in row 1 to 7.

myInt = myArray(1, 5)

This code would set myInt to the current value contained within column 5 of row 1
of myArray.

Multi-Dimensional Arrays

For arrays of three or more dimensions, you would use the same format as listed
above, taking into account the progression of the array dimensions. For a three-
dimensional array, the first dimension would be the row, the second the column, the third
would be the z-order, or depth, of each column. For example, to define a cube in space,
you would use the y,x,z format, where y defines the vertical axis, x defines the horizontal
axis and z defines the depth axis. To create an array in this format you could define the
array as Dim myCube(y, x, z) as Integer. MyCube(10, 10, 10) would create a cube

 151

with 11 vertical units, 0 to 10, 11 horizontal units, 0 to 10 and 10 depth units, 0 to 10. To
access the center of the cube, you would use iCenter = myCube(5, 5, 5).

You will probably never need to use arrays of more than three dimensions, unless
you are doing some advanced mathematical calculations. However, if you need to use
higher-dimensional arrays, the same principles apply.

The following program illustrates creating and accessing a two dimensional array.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Option Explicit

'Create a two­dimensional array

Dim As Integer myArray(1 To 2, 1 To 10), i, j

'Load some data into the array

For i = 1 To 2

 For j = 1 To 9

 myArray(i, j) = Rnd * 10

 Next

Next

'Print data in array

For i = 1 To 2

 For j = 1 To 9

 Print "row:";i;" col:";j;" value:";myArray(i, j)

 Next

Next

Sleep

End

Listing 12.1: arrayindex.bas

Analysis: Line 4 creates a two-dimensional array with two rows, with each row
having ten columns. The working variables i and j are also declared on the same line.
Lines 7 through 11 load some random data into the array. A nested For-Next loop is the
common way to access multi-dimensional arrays. The variable i will select the row
indexes while the j variable will access the column indexes.

Lines 14 through 18 will print the values stored in the array. The format is identical
to the load code. The program is closed in the usual way.

When you run the program you should see the following output.

row: 1 col: 1 value: 0

row: 1 col: 2 value: 6

152

row: 1 col: 3 value: 2

row: 1 col: 4 value: 8

row: 1 col: 5 value: 6

row: 1 col: 6 value: 5

row: 1 col: 7 value: 4

row: 1 col: 8 value: 9

row: 1 col: 9 value: 8

row: 2 col: 1 value: 7

row: 2 col: 2 value: 2

row: 2 col: 3 value: 9

row: 2 col: 4 value: 7

row: 2 col: 5 value: 5

row: 2 col: 6 value: 3

row: 2 col: 7 value: 0

row: 2 col: 8 value: 1

row: 2 col: 9 value: 4

Output 12.1: Output of arrayindex.bas

Dynamic Arrays

The arrays described above are static arrays; the array size cannot change during
program execution. You can also create dynamic arrays that can change size during
execution. Dynamic arrays are useful for creating data structures such as stacks or
queues.

In order to use dynamic arrays in your program you need to include the Option
Dynamic directive in your program. Static arrays, the arrays described above, are kept on
the heap, but dynamic arrays are allocated from the computer's pool of memory so
Option Dynamic is needed to tell the compiler to dynamically allocate the array. You can
dimension a dynamic array in two ways. The first is to declare the array size in the Dim
statement and then resize it using Redim or Redim Preserve. The second is to not specify
the array size, use empty parenthesis, and then use Redim or Redim Preserve to size the
array. Redim will size the array and clear the array contents. Redim Preserve will size the
array and keep any existing data in th array.

There are a couple of exceptions to this. When declaring an array using variables for the
index values, the array is implicitly dynamic. You can also declare an array without
specifying index values, that is using an empty parentheses in the array declaration,
and then use Redim to resize the array without specifying Option Dynamic.

The following program creates a simple integer stack and then manipulates
the stack.

1

2

Option Explicit

Option Dynamic

 153

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

'Create an integer stack. The 0 index will be our empty marker.

Dim As Integer stack(0), top = 0, i, ivalue

'This will push a value on the stack, update the top of stack

Sub PushValue(astack() As Integer, stacktop As Integer, value As Integer)

 'Increment the top of the stack

 stacktop += 1

 'Resize the stack

 Redim Preserve astack(stacktop)

 astack(stacktop) = value

End Sub

'This will pop a value off the stack, update top of stack

Function PopValue(astack() As Integer, stacktop As Integer) As Integer

 Dim As Integer ret

 If stacktop = 0 Then

 ret = 0

 Else

 ret = astack(stacktop)

 stacktop ­= 1

 Redim Preserve astack(stacktop)

 End If

 Return ret

End Function

'Push five values on to stack

Print "Pushing values on stack..."

For i = 1 To 5

 ivalue = i * 2

 PushValue stack(), top, ivalue

 Print "Stack top:";Ubound(stack),"Value:";ivalue

Next

Print

'Pop the values off the stack

Print "Popping values from stack..."

ivalue = PopValue(stack(), top)

Do While ivalue > 0

 Print "Stack Value:";ivalue

 ivalue = PopValue(stack(), top)

Loop

Print

'Check stack size

154

48

49

50

51

Print "Stack size after pops:";Ubound(stack)

Sleep

End

Listing 12.2: stack.bas

Analysis: In line the Option Dynamic directive is used to create the stack array
using dynamic memory. Line 5 dimensions the working variables. The 0 index in the stack
array will be used to indicate that the stack is empty. Even though this wastes one
integer, it makes the code easier to implement. Line 8 through 14 defines the code to
push a value on to the the stack. The parameters of the subroutine are the stack array,
the top-of-stack variable, and the value to push on to the stack. You could determine the
top of the stack using the Ubound function, however in a real stack implementation, you
will probably need to pass the top-of-stack to other functions, and keeping the value in a
variable will reduce the number of calculations the program must do.

Line 10 increments the stack top variable, and line 12 uses Redim Preserve to
resize the array, while keeping the existing data in the array. Line 13 set the new array
location to the value passed to the subroutine.

Line 16 through 27 pops the top value of the stack, if the stack index is grater than
zero, updates the top-of-stack variable and then returns the popped value. Line 19 and
20 checks to make sure that the stack has some data. If the index is 0, the stack is
empty. Lines 22 through 24 get the current value of the top stack item, updates the stack
pointer variable and then resizes the stack using Redim Preserve. Lines 31 through 35
use a For-Next loop to push 5 values on to the stack. Lines 40 through 44 pop the values
off the stack. A Do-Loop is used to pop the values since when the stack is empty, the
return value will be 0. Line 48 then cheks to see if all the values have been popped from
the stack.

The program is closed in the usual way.

When you run the program you will see the following output.

 155

Pushing values on stack...

Stack top: 1 Value: 2

Stack top: 2 Value: 4

Stack top: 3 Value: 6

Stack top: 4 Value: 8

Stack top: 5 Value: 10

Popping values from stack...

Stack Value: 10

Stack Value: 8

Stack Value: 6

Stack Value: 4

Stack Value: 2

Stack size after pops: 0

Output 12.2: Output of stack.bas

Stacks have a wide range of uses, however most implementations use pointers
since it is much faster to manipulate a pointer than it is an array. The advantage of an
array is the simplicity of use, and the readability of the code, but if you need speed, you
should use a pointer memory array for stacks.

You can only Redim or Redim Preserve the first index, that is the row, in a
multidimensional array.

Array Functions

There are a number of functions that you can use to manage arrays. The following
table lists the array functions available in FreeBasic.

Function Syntax Comment

Clear Clear array, value,
num_bytes

Sets num_bytes in array to
byte value.

Erase Erase array Erases dynamic arrays from
memory, or clears static
arrays.

Lbound B = Lbound(array)

B = Lbound(array,
dimension)

Returns the lowest index of
a single or multidimensional
array. The dimension
parameter is the dimension
to check in a
multidimensional array
where the first dimension is

156

Function Syntax Comment

1, the second dimension is
2, and so on.

Option Dynamic Option Dynamic Allocates arrays into
dynamic memory by
default.

Option Static Option Static Clears a previous Option
Dynamic. All subsequent
arrays will be allocated on
the heap.

Preserve Redim Preserve Preserves data in an array
when resized using the
Redim statement.

Redim Redim array(dimensions) as
DataType

Resizes an array to size
dimensions.

Ubound B = Lbound(array)

B = Lbound(array,
dimension)

Returns the highest index of
a single or multidimensional
array. The dimension
parameter is the dimension
to check in a
multidimensional array
where the first dimension is
1, the second dimension is
2, and so on.

Table 12.1: Array Functions

Out of all the functions, you will probably use the Lbound and Ubound functions
the most, especially when working with dynamic arrays. The following program uses both
functions to get the size of a two dimensional array.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Option Explicit

Option Dynamic

'Create a dynamic array

Dim As Integer myArray(), i, nb

'Resize array with two dimensions

Redim myArray(1 To 1, 1 To 5)

'Print upper and lower bounds for each row and column

Print "First Redim"

Print "­­­­­­­­­­­"

Print "Min Row Index:";Lbound(myArray, 1);

Print " ­­ Max Row Index:";Ubound(myArray, 1)

Print "Min Column index:";Lbound(myArray, 2);

Print" ­­ Max Column index:";Ubound(myArray, 2)

 157

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Print

Print "Additional Redims"

Print "­­­­­­­­­­­­­­­­­"

'Redim array five times

For i = 1 To 5

 nb = Ubound(myArray, 1) + 1

 Redim myArray(1 To nb, 1 To 5)

 'Print new array size

 Print "Min Row Index:";Lbound(myArray, 1);

 Print " ­­ Max Row Index:";Ubound(myArray, 1)

 Print "Min Column index:";Lbound(myArray, 2);

 Print " ­­ Max Column index:";Ubound(myArray, 2)

 Print

Next

Sleep

End

Listing 12.3: ulbound.bas

Analysis: Line 2 set the compiler directive Option Dynamic so that the array is
allocated in dynamic memory. Line 5 creates a dynamic array with no dimensions
specified. Line 7 uses Redim to create a two-dimensional array. Lines 10 through 15 print
the upper and lower bounds using Lbound and Ubound respectively. Notice that the
dimension parameter is used to specify which dimension to get the lower and upper
bounds. 1 is used to get the bounds for the first dimension, and 2 is used to get the
second dimension.

Lines 20 through 29 resize the first dimension of the array and print the new lower
and upper indexes. Line 21 gets the current upper bound of the first dimension, 1 is
added to that value and then Redim is used in line 22 to resize the first dimension of the
array. Lines 24 through 27 get the new bounds and print the values to the screen.

The program is closed in the usual way.

When you run the program you should see the following output.

First Redim

­­­­­­­­­­­

Min Row Index: 1 ­­ Max Row Index: 1

Min Column index: 1 ­­ Max Column index: 5

Additional Redims

­­­­­­­­­­­­­­­­­

Min Row Index: 1 ­­ Max Row Index: 2

Min Column index: 1 ­­ Max Column index: 5

158

Min Row Index: 1 ­­ Max Row Index: 3

Min Column index: 1 ­­ Max Column index: 5

Min Row Index: 1 ­­ Max Row Index: 4

Min Column index: 1 ­­ Max Column index: 5

Min Row Index: 1 ­­ Max Row Index: 5

Min Column index: 1 ­­ Max Column index: 5

Min Row Index: 1 ­­ Max Row Index: 6

Min Column index: 1 ­­ Max Column index: 5

Listing 12.4: Output of ulbound.bas

The first Redim sets the initial bounds for the array. The additional Redims increase
the number of rows in the array, while leaving the number of columns in intact. Keep in
mind that arrays in FreeBasic are table-like, where each row has the same number of
columns. Ragged arrays, where each row has a different number of columns, cannot be
created in FreeBasic using arrays. You would have to use pointers to create a ragged
array.

Arrays of Types

Type definitions allow you to group related data into a single entity, and often you
will need more than one instance of a type to fully express the data. Arrays of types allow
you create multiple instances of a type definition that can be easily managed using the
arrays functions. An example of this usage may be an inventory system for your RPG, a
series of document descriptions within an editor, and a set of employee records from a
random access database.

You create arrays of types just as you would with any of the intrinsic data types.
The following code snippet illustrates the syntax.

Type myPoint

x As Integer

y As Integer

End Type

Type myLine

p1 As myPoint

p2 As myPoint

char As String * 1

End Type

Dim myLineSet (1 to 3) as myLine

 159

The code defines a set of 3 lines, with endpoints p1 and p2, where each endpoint
is located at row and col. The following program illustrates using this definition to print
some lines to the console screen.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Option Explicit

'Define the point

Type myPoint

x As Integer

y As Integer

End Type

'Define the line

Type myLine

p1 As myPoint

p2 As myPoint

char As String * 1

End Type

'Create a set of 3 lines

Dim myLineSet (1 To 3) As myLine

Dim As Integer i

'This subroutine uses the Bresenham Line algorithm

'to print a line on the console screen. Google

'"Bresenham Line algorithm" for more information.

Sub DrawLine(aLine As myLine)

 Dim As Integer i, deltax, deltay, num

 Dim As Integer d, dinc1, dinc2

 Dim As Integer x, xinc1, xinc2

 Dim As Integer y, yinc1, yinc2

 Dim As Integer x1, y1, x2, y2

 'Get the endpoint coordinates

 x1 = aLine.p1.x

 y1 = aLine.p1.y

 x2 = aLine.p2.x

 y2 = aLine.p2.y

 'Get the delta change in both x and y

 deltax = Abs(x2 ­ x1)

 deltay = Abs(y2 ­ y1)

 'Calculate the slope of the line

 If deltax >= deltay Then

160

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

 num = deltax + 1

 d = (2 * deltay) ­ deltax

 dinc1 = deltay Shl 1

 dinc2 = (deltay ­ deltax) Shl 1

 xinc1 = 1

 xinc2 = 1

 yinc1 = 0

 yinc2 = 1

 Else

 num = deltay + 1

 d = (2 * deltax) ­ deltay

 dinc1 = deltax Shl 1

 dinc2 = (deltax ­ deltay) Shl 1

 xinc1 = 0

 xinc2 = 1

 yinc1 = 1

 yinc2 = 1

 End If

 If x1 > x2 Then

 xinc1 = ­ xinc1

 xinc2 = ­ xinc2

 End If

 If y1 > y2 Then

 yinc1 = ­ yinc1

 yinc2 = ­ yinc2

 End If

 x = x1

 y = y1

 Locate y, x

 Print aLine.char;

 For i = 2 To num

 'Get the next iteration of the line

 If d < 0 Then

 d = d + dinc1

 x = x + xinc1

 y = y + yinc1

 Else

 d = d + dinc2

 x = x + xinc2

 y = y + yinc2

 End If

 Locate y, x

 161

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

 Print aLine.char;

 Next

End Sub

'Returns a random number between low and high

Function GetRandom(lowerbound As Integer, upperbound As Integer) As Integer

 GetRandom = Int((upperbound ­ lowerbound + 1) * Rnd + lowerbound)

End Function

Randomize Timer

'Initialize and print the lines

For i = Lbound(myLineSet) To Ubound(myLineSet)

 'Set the first endpoint coordinates

 myLineSet(i).p1.x = GetRandom(1, 80)

 myLineSet(i).p1.y = GetRandom(1, 25)

 'Set the second endpoint coordinates

 myLineSet(i).p2.x = GetRandom(1, 80)

 myLineSet(i).p2.y = GetRandom(1, 25)

 'Get the display character

 myLineSet(i).char = Chr(GetRandom(33, 47))

 'Print the line

 DrawLine myLineSet(i)

Next

Sleep

End

Listing 12.5: arrayoftypes.bas

Analysis: Lines 4 through 7 define the coordinates for the an endpoint of a line.
Lines 10 through 14, define a line, with two endpoints and the character used to print the
line on the console screen. Line 17 defines a set of three lines, and line 18 defines a
working variable that will be used in a For-Next loop that will initialize and display the
line.

Lines 23 through 89 define a subroutine that implements the Bresenham Line
algorithm to print the line to the console screen. There are a number of resources on the
Internet that explain the algorithm in detail and can be found using your favorite search
engine.

Lines 92 through 94 define a function that will return a random integer in the
range of lowerbound to upperbound, inclusive. Line 96 initializes the random number
generator by seeding the generator with the current Timer value. Randomize Timer
ensures that each call to Rnd will return a different random number. Without the
Randomize statement, Rnd will return the same sequence of random number.

Line 98 through 109 initialize each line in the array and then calls the DrawLine
subroutine to print the line. When accessing the fields of a type within an array, you must
specify which array element you are accessing by using parentheses with an index value,

162

jut as you would an intrinsic data type. You can then access each element within the type
using the familiar dot notation you saw in the chapter on composite types. Notice that
the syntax is similar to the syntax used in the type memory array example, and the rules
are accessing type fields is the same.

Once each array element has been initialized and each line printed, the program is
closed in the usual way.

When you run the program you should see something like the following output.

 %%%

 %%%

 %%)

 %%%)

 %%%)

 %%%)

 %%%)

 %%)

 %%%)

 %%)

 //////

 //////////

 //////////

 //////////

 //////////

 //////////

 /////

Output 12.3: Output of arrayoftypes.bas

Your output will vary since the end points of the lines, and the line character are
random generated.

Arrays in Types

As you saw in the chapter on composite types, type fields be both intrinsic and
composite type. You can also create static arrays within a type definition. In the listing
above, you can see that a line has two endpoints. Rather than using two distinct fields,
you can create an array of endpoints that describe the line. The following code listing is a
modification of the previous listing, using an array to describe the endpoints.

1

2

Option Explicit

 163

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

'Define the point

Type myPoint

x As Integer

y As Integer

End Type

'Define the line

Type myLine

 pts(1 To 2) As myPoint

 char As String * 1

End Type

'Create a set of 3 lines

Dim myLineSet (1 To 3) As myLine

Dim As Integer i, j

'This subroutine uses the Bresenham Line algorithm

'to print a line on the console screen. Google

'"Bresenham Line algorithm" for more information.

Sub DrawLine(aLine As myLine)

 Dim As Integer i, deltax, deltay, num

 Dim As Integer d, dinc1, dinc2

 Dim As Integer x, xinc1, xinc2

 Dim As Integer y, yinc1, yinc2

 Dim As Integer x1, y1, x2, y2

 'Get the endpoint coordinates

 x1 = aLine.pts(1).x

 y1 = aLine.pts(1).y

 x2 = aLine.pts(2).x

 y2 = aLine.pts(2).y

 'Get the delats change in both x and y

 deltax = Abs(x2 ­ x1)

 deltay = Abs(y2 ­ y1)

 'Calculate the slope of the line

 If deltax >= deltay Then

 num = deltax + 1

 d = (2 * deltay) ­ deltax

 dinc1 = deltay Shl 1

 dinc2 = (deltay ­ deltax) Shl 1

 xinc1 = 1

 xinc2 = 1

 yinc1 = 0

164

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

 yinc2 = 1

 Else

 num = deltay + 1

 d = (2 * deltax) ­ deltay

 dinc1 = deltax Shl 1

 dinc2 = (deltax ­ deltay) Shl 1

 xinc1 = 0

 xinc2 = 1

 yinc1 = 1

 yinc2 = 1

 End If

 If x1 > x2 Then

 xinc1 = ­ xinc1

 xinc2 = ­ xinc2

 End If

 If y1 > y2 Then

 yinc1 = ­ yinc1

 yinc2 = ­ yinc2

 End If

 x = x1

 y = y1

 Locate y, x

 Print aLine.char;

 For i = 2 To num

 'Get the next iteration of the line

 If d < 0 Then

 d = d + dinc1

 x = x + xinc1

 y = y + yinc1

 Else

 d = d + dinc2

 x = x + xinc2

 y = y + yinc2

 End If

 Locate y, x

 Print aLine.char;

 Next

End Sub

'Returns a random number between low and high

Function GetRandom(lowerbound As Integer, upperbound As Integer) As Integer

 GetRandom = Int((upperbound ­ lowerbound + 1) * Rnd + lowerbound)

 165

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

End Function

Randomize Timer

'Initialize and print the lines

For i = Lbound(myLineSet) To Ubound(myLineSet)

 For j = Lbound(myLineSet(i).pts) To Ubound(myLineSet(i).pts)

 'Set the first endpoint coordinates

 myLineSet(i).pts(j).x = GetRandom(1, 80)

 myLineSet(i).pts(j).y = GetRandom(1, 25)

 'Set the second endpoint coordinates

 myLineSet(i).pts(j).x = GetRandom(1, 80)

 myLineSet(i).pts(j).y = GetRandom(1, 25)

 'Get the display character

 myLineSet(i).char = Chr(GetRandom(33, 47))

 'Print the line

 Next

 DrawLine myLineSet(i)

Next

Sleep

End

Listing 12.6: arrayintypes.bas

Analysis: This program is identical to the previous program, except that this
program uses an array to describe the endpoints of the line. Only the changes to the
program will discussed in this section.

Line 11 defines a single dimension array of endpoints that has two elements. In
lines 97 through 110, the program initializes each line element. The outer loop selects
each line type within the line set array. The inner For-Next loop then selects each
endpoint element with the endpoint array. Notice that you an use Lbound and Ubound for
this array, just as you can with the main array. Arrays within a type definition are true
arrays, and all the functions available in FreeBasic can be used with embedded arrays.
The inner j loop Lbound and Ubound use the outer loop specification, myLineSet(i).pts,
to select a line element within the line set array, and then the function is applied to the
embedded array. The endpoints are then initialized using both the i and j specifications,
myLineSet(i).pts(j).x = GetRandom(1, 80). The variable i selects a line while j
selects an endpoint within the selected line. The dot notation is used to reference each
field within the type definition, including the endpoint array. Again, the notation and
principles are similar to a type memory array.

The program is closed in the usual way after printing all the lines.

The output of this program is the same as the previous program and is not shown
here. Using an array for the endpoints enables you to easily extend the line definition to
support not only lines, but triangles and squares. The following code snippet shows one
possible definition.

166

Type myObj

objid As Integer

Union

 myLine(1 To 2) As myPoint

myTriangle(1 To 3) As myPoint

mySquare(1 To 4) As myPoint

End Union

 char As String * 1

End Type

The objid field would indicate which type of object is contained within the
definition. That is, a 1 may indicate a line, a 2 may indicate a triangle and a 3 may
indicate a square. Since the definition defines a single object, a union is used to enclose
the endpoint arrays to maximize memory usage. To print the object to the screen, you
would examine the objid and then use the Lbound and Ubound on the appropriate
endpoint array definition, printing the number of lines that correspond to the type of
object. One further enhancement you can make to this program is to add a function
pointer to the type definition, and then write print routines that correspond to the type of
object being printed. Using this technique will enable you to further extend the
usefulness of the code by simplifying the process of adding new objects to the type
definition. For example, if you needed to be able to describe a cube, you would simply
add an new array to the union, add a cube print function, and the type definition would
be able to print a cube by simply adding a few lines of code, while keeping the original
functionality intact.

Array Initialization

You can initialize an array with values when using the Dim statement in a manner
similar to initializing any of the other intrinsic data types, and type definitions. The
following code snippet illustrates the syntax using a one dimensional array.

Dim aArray(1 to 5) As Integer => {1, 2, 3, 4, 5}

This code snippet dimensions a ubyte array with 5 elements, then sets the
elements to the list contained within the curly brackets. The arrow operator, => tells the
compiler that the list following the Dim statement should be used to initialize the array.
You can also dimension multidimensional arrays in the same manner, by specifying
blocks of data enclosed within curly braces as the following code snippet illustrates.

Dim bArray(1 to 2, 1 to 5) As Integer => {{1, 2, 3, 4, 5}, _

 {6, 7, 8, 9, 10}}

In this example, the first block, {1, 2, 3, 4, 5}, corresponds to row 1, and the
second block, {6, 7, 8, 9, 10}, corresponds to row 2. Remember that FreeBasic arrays are
row-major, so the row is specified before the column. When you initialize an array in this
manner, you must be sure that the number of elements defined will fit into the array.

The following programs initializes two arrays and print the values to the console.

 167

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Option Explicit

Dim aArray(1 To 5) As Integer => {1, 2, 3, 4, 5}

Dim bArray(1 To 2, 1 To 5) As Integer => {{1, 2, 3, 4, 5}, _

 {6, 7, 8, 9, 10}}

Dim As Integer i, j

'Print aArray values.

For i = 1 To 5

 Print "aArray(";i;"):";aArray(i)

Next

Print

'Print bArray values.

For i = 1 To 2

 For j = 1 To 5

 Print "bArray(";i;",";j;"):";bArray(i, j)

 Next

Next

Sleep

End

Listing 12.7: arrayinit.bas

Analysis: Line 3 creates a single-dimension array and initializes the values of the
array. Line 4 creates a two-dimensional array and initializes the both rows of the array.
Line 9 through 11 print the contents of the first array to the screen and lines 15 through
19 print the contents of the second to the screen. The program is then closed in the usual
way.

When you run the program you should see the following output.

aArray(1): 1

aArray(2): 2

aArray(3): 3

aArray(4): 4

aArray(5): 5

bArray(1, 1): 1

bArray(1, 2): 2

bArray(1, 3): 3

168

bArray(1, 4): 4

bArray(1, 5): 5

bArray(2, 1): 6

bArray(2, 2): 7

bArray(2, 3): 8

bArray(2, 4): 9

bArray(2, 5): 10

Listing 12.8: Output of arrayinit.bas

As you can see from the output, both arrays have been initialized correctly, and
without using a loop to load the data into the array. You can initialize arrays of any size
using this method, although large arrays get a bit hard to work with and it is important to
maintain the proper order of data in the initialization block.

Type Array Initialization

Since you can initialize a type definition and an array, it stands to reason you can
do the same with a type array. In the chapter on type definitions you saw the syntax for
initializing a type, and here you have seen how to initialize an array. To initialize a type
array, you use both the type initialization syntax with the array initialization syntax, as
you would expect. The following code snippet illustrates this combined syntax.

Type aType

 a As Integer

 b As Byte

 c(1 To 2) As Zstring * 10

End Type

Dim As aType myType(1 To 2) => { (1234, 12, {"Hello", "World"}), _

 (5678, 24, {"From", "Freebasic"}) _

 }

The curly brackets signify that this is an array initialization, while the parenthesis
indicate the type initialization. Since the type has an embedded array, you use the curly
brackets to load the data into the embedded array, just as you would a stand-alone array.
If the embedded array was a multidimensional array, then you would need to wrap each
row in { and } just as you would a stand-alone array.

The following program shows how all this works together.

1

2

3

4

5

6

7

Option Explicit

'Create a type definiton

Type aType

 a As Integer

 b As Byte

 c(1 To 2) As Zstring * 10

 169

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

End Type

'Dimension and init the type array

Dim As aType myType(1 To 2) => { (1234, 12, {"Hello", "World"}), _

 (5678, 24, {"From", "Freebasic"}) _

 }

'Working variables

Dim As Integer i, j

'Display type values

For i = 1 To 2

 Print "Type array index: ";i

 With myType(i)

 Print .a

 Print .b

 For j = 1 To 2

 Print .c(j)

 Next

 End With

 Print

Next

Sleep

End

Listing 12.9: typearray-init.bas

Analysis: Lines 4 through 8 define the type definition. Line 11 dimensions and
initializes the type definition array. The type elements are enclosed in parenthesis, while
the embedded array is enclosed within curly brackets. Line 15 creates some working
variables for the For-Next loops. Lines 18 through 28 print the values to the console
screen using a With block. The program is closed in the usual way.

When you run the program you should see the following output.

170

Type array index: 1

 1234

 12

Hello

World

Type array index: 2

 5678

 24

From

Freebasic

Output 12.4: Output of typearray-init.bas

CRT Array Functions

There are a few CRT functions that you can use to manipulate arrays. The following
table lists the Mem* functions which are defined in string.bi.

Function Syntax Comment

Memchr Ptr =
Memchr(@Array(start),

byte_value, Ubound(Array))

Returns a pointer to
byte_value in byte Array, or
Null pointer if byte_value is
not found. Memchr only
works with byte arrays.

Memcpy Ptr =
Memcpy(@ArrayTo(start),

@ArrayFrom(start),
num_bytes)

Copies num_bytes from
ArrayFrom to ArrayTo and
returns a pointer to ArratTo.
Do not use this function if
From and To overlap. Use
Memmove instead.

Memmove Ptr =
Memmem(@ArrayTo(start),

@ArrayFrom(start),
num_bytes)

Works the same as Memcpy
but correctly handles
overlapping memory
segments.

Table 12.2: CRT Array Functions

The following program illustrates using Memchr to search for a byte within a byte
array, and Memcpy to copy one array into another array.

1

2

3

4

Option Explicit

#include once "crt.bi"

 171

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Dim As Ubyte aArray(1 To 5) => {65, 123, 100, 52, 42}, bArray(1 To 5)

Dim bret As Ubyte Ptr

Dim As Integer index, i

'Look for 100 in byte array

Print "Looking for byte 100..."

Print

bret = Memchr(@aArray(1), 100, Ubound(aArray))

If bret <> NULL Then

 index = bret ­ @aArray(Lbound(aArray)) + Lbound(aArray)

 Print "100 found at index ";index

Else

 Print "100 not found."

End If

Print

'Copy aArray to bArray

Print "Copying aArray to bArray..."

Print

bret = Memcpy(@bArray(1), @aArray(1), Ubound(aArray) * Sizeof(Ubyte))

If bret <> NULL Then

 For i = 1 To 5

 Print "bArray(";i;") = ";bArray(i)

 Next

End If

Sleep

End

Listing 12.10: memfunc.bas

Analysis: Line 3 includes the crt.bi header file so that Memchr and Memcpy will be
available to the program. Both functions are located in string.bi, which is included when
you include crt.bi. Line 5 creates two ubyte arrays, the first which is initialized with some
byte data. Remember that the ubyte data type has a range of 0 to 255. Line 6 declares a
ubyte pointer which will be the return value fr the Memchr function. Line 7 declares two
working variables, index which will be used to calulate the array index of the Memchr
search, and I which will be used to print the contents of bArray after the Memcpy
operation.

Line 12 calls the Memchr function. The first parameter is the address of the first
element of aArray, which has an index of 1, the value to find, which is 100, and the
length of the array. If Memchr finds the byte in the array, it will return a pointer to the
value. If it cannot find the byte, bret will be Null. Line 13 checks the return value to make
sure that bret is not Null; using a Null pointer will cause the program to behave strangely
or crash.

Line 14 calculates the array index of the found byte. Bret contains the address of
byte 100 in the array. @aArray(1) returns the address of the first element of the array.
Since arrays are sequential memory locations, you can find the array index by

172

subtracting the address of the first array element from bret, and then adding the lower
bound index to the value. This will give you the index of the array element. Line 15 prints
the calculated index value to the console.

Line 23 copies the values from aArray to bArray. Again, the address of the first
element of each array is passed to function, along with the number of bytes to copy. The
number of bytes to copy is passed to the function with the code Ubound(aArray) *
Sizeof(Ubyte), which uses the number of elements in the array times the size of a ubyte.
Lines 24 through 28 then print the values of bArray to screen to verify that the array was
in fact copied. The program is closed in the usual way.

When you run the program you should see the following output.

Looking for byte 100...

100 found at index 3

Copying aArray to bArray...

bArray(1) = 65

bArray(2) = 123

bArray(3) = 100

bArray(4) = 52

bArray(5) = 255

Output 12.5: Output of memfunc.bas

As you can see from the output, both operations succeeded. Memcopy is
extremely handy when you need to make a copy of an array. The function is much faster
than using a For-Next, and there considerably less code to write.

Using the -exx Compiler Switch

The -exx compiler switch will enable error and bounds checking within your
program. If you go outside the bounds of an array within your program, the compiler will
generate an “out of bounds” error while the program is running. This is a great help in
debugging your program, and finding problems associated with arrays. -exx will also
inform of you of Null pointer assignments, so it is quite useful when working with pointers
as well. If you are using FBIde select View->Settings from the menu and the FreeBasic
tab in the settings dialog. Add -exx to the end of your compiler command string.

Using -exx does add quite of bit of additional code to your program, so once your
program is functioning correctly, you will want to compile the program without the -exx
switch.

 173

A Look Ahead

Manipulating date and time values is a common task in programming. FreeBasic
has a number of date and time functions that make working with date and time
information quite easy, as you will see in the next chapter.

174

13 Date and Time Functions

Working with dates and time in many Basic languages can be problematic due to
the lack of date and time functions. FreeBasic however, has a rich set of date and time
functions, and when used in combination with the Format function, which you will see in
the next chapter, you can easily handle any date or time problem you may encounter.

Intrinsic Date and Time Functions

FreeBasic includes the standard date and time functions that you see in most Basic
languages. The following table lists these functions.

Function Syntax Comment

Date B = Date Returns the current system
date as a string.

Setdate B = Setdate(date_string) Sets the system date to
date_string, returning 0 on
success and non-zro on
failure. Date string must be
in one of the following
formats: mm-dd-yy", "mm-
dd-yyyy", "mm/dd/yy", or
"mm/dd/yyyy".

Settime B = Settime(time_string) Sets the system time to
time_string, returning 0 on
success and non-zero on
failure. Time string must be
in one of the following
formats: "hh:mm:ss",
"hh:mm", or "hh".

Time B = Time Returns the current system
time as a string.

Timer B = Timer Returns the number of
seconds since the computer
was started as a double-
type value. If the computer's
CPU supports the
Performance Counter, than
Timer has a resolution in
microseconds. On
computers without the
Performance Counter, the
resolution is 1/18 of a
second.

Table 13.1: Intrinsic Date and Time Functions

 175

The following short programs demonstrates the return values for Date and Time as
well as using Timer in a delay loop.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Option Explicit

Dim myTimer As Double

Print "Current time is ";Time

Print "Current date is ";Date

Print "Number of seconds since computer started: ";Timer

Print "Pausing for 2 seconds..."

myTimer = Timer + 2

Do

 Sleep 10

Loop Until Timer > myTimer

Print "Press any key to continue..."

Sleep

End

Listing 13.1: datetime.bas

Analysis: Line 3 dimensions a double-type variable for use with the Timer function.
Line 5 prints out the current system date. Line 6 prints out the current system time. Line
7 prints out the number of seconds since the computer was started. Line 9 initializes the
variable myTimer with the current Timer result plus 2 seconds. The Do-Until loop in lines
10 through 12 loop until the 2 seconds have expired. The Sleep in line 11 allows the
operating system to handle any other events while the computer is busy in the Do loop.
Whenever you have an extended loop of this nature, you need to use a Sleep x
command, where x is the number of milliseconds to wait. This will keep your program
from consuming 100% CPU time and allow other processes to execute. The program is
ended in the usual way.

When you run the program you should see something similar to the following
output.

Current time is 11:44:02

Current date is 06­27­2006

Number of seconds since computer started: 10710.42349851727

Pausing for 2 seconds...

Press any key to continue...

Output 13.1: Output of datetime.bas

176

As the example program illustrates, you can use the Timer function for delay loops.
This is common in games that want to control the FPS, or frames-per-second, when using
real-time animation techniques. In the code above, the initial Timer value is saved in a
variable. Timer returns the number of seconds since the computer was started, so adding
2 to this variable will create a 2 second interval. The Until portion of the loop checks to
see if the current result of the Timer function is greater than the saved value, and exits
when 2 seconds have elapsed.

Extended Date and Time Functions

In addition to the functions listed above, FreeBasic has several extended date and
time functions that enable you to easily calculate date and time intervals, and extract
different parts of a date or time number for use in your program. In order to use these
functions you must include "vbcompat.bi" in your program. Most of these functions
require a date serial, a double-type value that represents a date and time number. The
date is stored in the integer portion of the double, while the time is stored in the
fractional part of the double.

DateAdd Function

The DateAdd function returns a future or past date or time based on a certain
interval. The function requires a serial start date or time, an interval string and the
number of intervals.

date_serial = DateAdd(interval_string, number_of_intervals,
start_date_serial)

The following list explains each of the parameters in order; that is, interval_string
is 1 below, number_of_intervals is listed as 2, and so on, along with the return value.

 1. Interval string: This is a string that indicates what interval to add to the start
date_serial.

 a) “yyyy”: years

 b) “q”: quarters

 c) “m”: months

 d) “ww”: weeks

 e) “d”,”w”,”y”: days

 f) “h”: hours

 g) “n”: minutes

 h) “s:” seconds

 2. Number of intervals: The number of intervals defined in interval_string to add to
the passed date_serial.

 3. Date serial: The starting date in the calculation.

 177

 4. Return: Returns a date serial that is offset by intervals from the starting date.

The following program illustrates the DateAdd function.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Option Explicit

#Include Once "vbcompat.bi"

'Date serial variable

Dim nDate As Double

Dim interval As Integer = 2

Dim intervalstr As String

Print "Number of intervals:";interval

Print

Print "Current Date: ";Format(Now, "mm­dd­yyyy")

Print

'Year interval

intervalstr = "yyyy"

nDate = DateAdd(intervalstr, interval, Now)

Print intervalstr;": ";Format(nDate, "mm­dd­yyyy")

'Quarter interval

intervalstr = "q"

nDate = DateAdd(intervalstr, interval, Now)

Print intervalstr;": ";Format(nDate, "mm­dd­yyyy")

'Month interval

intervalstr = "m"

nDate = DateAdd(intervalstr, interval, Now)

Print intervalstr;": ";Format(nDate, "mm­dd­yyyy")

'Week interval

intervalstr = "ww"

nDate = DateAdd(intervalstr, interval, Now)

Print intervalstr;": ";Format(nDate, "mm­dd­yyyy")

'Day interval

intervalstr = "d"

nDate = DateAdd(intervalstr, interval, Now)

Print intervalstr;": ";Format(nDate, "mm­dd­yyyy")

'w day interval

intervalstr = "w"

nDate = DateAdd(intervalstr, interval, Now)

Print intervalstr;": ";Format(nDate, "mm­dd­yyyy")

'y day interval

intervalstr = "y"

nDate = DateAdd(intervalstr, interval, Now)

Print intervalstr;": ";Format(nDate, "mm­dd­yyyy")

178

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

'Quarter interval

intervalstr = "q"

nDate = DateAdd(intervalstr, interval, Now)

Print intervalstr;": ";Format(nDate, "mm­dd­yyyy")

Print

Print "Current time: ";Format(Now, "hh:mm:ss")

Print

'Hour interval

intervalstr = "h"

nDate = DateAdd(intervalstr, interval, Now)

Print intervalstr;": ";Format(nDate, "hh:mm:ss")

'Minute interval

intervalstr = "n"

nDate = DateAdd(intervalstr, interval, Now)

Print intervalstr;": ";Format(nDate, "hh:mm:ss")

'Second interval

intervalstr = "s"

nDate = DateAdd(intervalstr, interval, Now)

Print intervalstr;": ";Format(nDate, "hh:mm:ss")

Sleep

End

Listing 13.2: dateadd.bas

Analysis: In line 3 the “vbcompat.bi” is included in the program. You need to
include this file if you want to use the extended date time functions as well as the format
function. Line 6 dimensions a double-type variable to hold the return value from the
DtaeAdd function. Line 7 creates an integer variable to hold the interval, which is set to
2. Line 8 creates a string that will hold the various interval strings. Line 10 prints the
current interval number. Line 12 prints the current date using the Format function and the
Now function. The Now function returns the current date and time as a date serial. The
format function's format string “mm-dd-yyyy” will print a two digit month, a two digit day
and a four digit year.

Lines 15 through 17 set the interval string for the DateAdd function, “yyyy” in this
case, passes the interval string, interval and the current date serial, using the Now
function. The calculated date is returned in nDate, which is passed to the Format function
in line 17. Lines 18 through 45 use the same code blocks to calculate the result for each
interval string.

Line 47 pints the current time. DateAdd works with time numbers as well as dates,
and lines 50 through 60 illustrate the different time offsets. The Format function uses the
format string “hh:mm:ss” in 47 which prints a 24-hour time. The same code blocks are
used for the time calculations that were used in the date calculations, and the results are
printed in the same fashion.

When you run the program your output should look similar to the following.

 179

Number of intervals: 2

Current Date: 06­27­2006

yyyy: 06­27­2008

q: 12­27­2006

m: 08­27­2006

ww: 07­11­2006

d: 06­29­2006

w: 06­29­2006

y: 06­29­2006

q: 12­27­2006

Current time: 16:28:12

h: 18:28:12

n: 16:30:12

s: 16:28:14

Output 13.2: Output of datedd.bas

Using a negative interval number will return a past date, rather than a future date.
Changing the variable interval in the above program to -2 will result in the following
output. Notice that the date and time return values are two intervals in the past.

Number of intervals:­2

Current Date: 06­27­2006

yyyy: 06­27­2004

q: 12­27­2005

m: 04­27­2006

ww: 06­13­2006

d: 06­25­2006

w: 06­25­2006

y: 06­25­2006

q: 12­27­2005

Current time: 16:52:09

180

h: 14:52:09

n: 16:50:09

s: 16:52:07

Output 13.3: Output with Negative Interval Number

DateDiff Function

The DateDiff functions returns the difference between two date or time serials
based on a certain interval. The function requires two date or time serials and an interval
string. You can optionally specify the first day of the week or the first day of the year.

int_value = DateDiff(interval_string, date_serial1, date_serial2)

int_value = DateDiff(interval_string, date_serial1, date_serial2,
first_day_of_week)

int_value = DateDiff(interval_string, date_serial1, date_serial2,
first_day_of_week, first_day_of_year)

You can specify the first day of the week when using the “ww” interval but the
default is to use the system setting. You can also specify which week belongs to which
year when a week spans the end of one year and the beginning of the next year.

 1. Interval string: The interval strings are the same strings used in the DateAdd
function.

 2. Date Serial 1: The first date or time of the difference.

 3. Date Serial 2: The second date or time of the difference.

 4. First Day of the week: Specifies the day number of the first day of the week. This is
used when using the “ww”, or week, interval string.

 a) Not specified: Sunday.

 b) 0: Local settings.

 c) 1: Sunday.

 d) 2: Monday.

 e) 3: Tuesday.

 f) 4: Wednesday.

 g) 5: Thursday.

 h) 6: Friday.

 i) 7: Saturday.

 5. First day of the year: Specifies what year a week will be associated with
when the week spans years.

 a) 0: Local settings.

 b) 1: January 1 week.

 c) 2: First week having four days in the year.

 181

 d) 3: First full week of year.

 6. Return: Returns an integer value that represents the number of intervals
between the two date or time values.

The following program illustrates the DateDiff function.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Option Explicit

#Include Once "vbcompat.bi"

Dim As Double Date1, Date2

'Get current date

Date1 = Now

'Get past date

Date2 = DateValue("1/1/2006")

'Print out number of days since first of year '06

Print "Number of days since ";Format(Date2, "mm/dd/yyyy");" is";DateDiff("d", Date2,
Date1)

Sleep

End

Listing 13.3: datediff.bas

Analysis: Line 3 includes the extended date and time functions contained in the
vbcompat.bi include file. Line 5 dimensions two double-type variables to hold the current
and past date. Line 8 gets the current date and time. Line 10 uses the DateValue function
to convert the string date to a DateSerial value. Line thirteen prints the number of days
that have elapsed since January 1, 2006.

When you run the program you should see output similar to the following.

Number of days since 01/01/2006 is 225

Output 13.4: Output of datediff.bas

DatePart Function

The DatePart function returns a specific part of a DateSerial, using the specified
interval. The function requires a DateSerial, the interval to return and optionally, the first
day of the week and the first day of the year. The function returns an integer value
representing the specified interval.

int_value = DatePart(interval_string, date_serial)

182

int_value = DatePart(interval_string, date_serial, first_day_of_week)

int_value = DatePart(interval_string, date_serial, first_day_of_week,
first_day_of_year)

1. Interval string: The interval strings are the same strings used in the DateAdd
function.

2. Date Serial: A date or time serial number.

3. First Day of the week: Specifies the day number of the first day of the week. The
values are the same as those listed in the DateDiff function.

4. First day of the year: Specifies what year a week will be associated with when the
week spans years. The values are the same as those listed in the DateDiff function.

5. Return: Returns an integer representing the interval value.

The following program illustrates using the DatePart function.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Option Explicit

#Include Once "vbcompat.bi"

Dim As Double myDate

'Get current date

myDate = Now

'Print date values

Print "Day number is";Datepart("d", myDate)

Print "Week number is";Datepart("ww", myDate)

Print "Month number is";Datepart("m", myDate)

'Print the current time numbers

Print "Hour is";DatePart("h", myDate)

Print "Minutes are";DatePart("n", myDate)

Print "Seconds are";DatePart("s", myDate)

Sleep

End

Listing 13.4: datepart.bas

Analysis: Line 3 includes the extended date and time functions. Line 5 creates a
double-type varibale to hold the current date and time serial. Line 8 uses the Now
function to return the current system date and time. Line 11 prints the day number. Line
12 prints the week number. Line 13 prints the month number. Line 15 prints the hour
number. Line 16 prints the minute number. Line 17 prints the second number. The
program is closed in the usual way.

 183

When you run the program you should see something similar to the following.

Day number is 15

Week number is 33

Month number is 8

Hour is 9

Minutes are 52

Seconds are 58

Output 13.5: Output of datepart.bas

The values you see will depend on the current date and time setting of your
computer.

DateSerial Function

The DateSerial function will return a double-type DateSerial value based on the
passed year, month and day. The date value returned by DateSerial has no time
component.

date_serial = DateSerial(year, month, day)

1. Year: The year component of the date.

2. Month: The month component of the date.

3. Day: The day component of the the date.

4. Return: Returns a DateSerial that is the value of the year, month and day
components.

The following program illustrates using the DateSerial function.

1

2

3

4

5

6

7

8

9

10

11

12

13

Option Explicit

#Include Once "vbcompat.bi"

Dim As Double myDate

'Build a date serial using the Datepart function

myDate = DateSerial(Datepart("yyyy", Now), Datepart("m", Now), _

 Datepart("d", Now))

Print "Current date is ";format(myDate, "mm/dd/yyyy")

Sleep

End

184

Listing 13.5: dateserial.bas

Analysis: Line 3 includes the extended date and time functions in the program.
Line 5 dimensions a double-type variable which will contain the date serial value. Lines 8
and 9 create a date serial using the Datepart function to extract the year, month and day
components from the current system date. Line 10 uses the Format function to print the
date to the console screen.

When you run the program you should see the current system date.

Current date is 08/15/2006

Output 13.6: Output of dateserial.bas

Of course it is a bit silly to use the DatePart function when you could simply use
the Now function to return the current system date, but this program shows how both
function could be used together in a program. In a real program, the year, month and day
values would be probably be coming from an external source which would need to be
combined to create a date serial that would then be used for a date calculation.

DateValue Function

The DateValue function takes a string as it argument and returns a date serial
value. The date string must be in the same format as the regional settings of the
computer.

date_serial = DateValue(date_string)

1. Date String: A date string in the current regional setting format. DateValue will only
convert a date string, not a time string.

2. Return: A DateSerial representing the date string.

The following program illustrates using the DateValue function.

1

2

3

4

5

6

7

8

9

10

11

Option Explicit

#Include Once "vbcompat.bi"

Dim As Double myDate

Dim As String myDateStr

'Create a date string value

myDateStr = "08/15/2006"

'Get the serial date value

myDate = DateValue(myDateStr)

 185

12

13

14

15

16

'Print the value

Print "Date string is ";Format(myDate, "mm/dd/yyyy")

Sleep

End

Listing 13.6: datevalue.bas

Analysis: Line 3 includes the extended date and time functions. Line 5 creates a
double DateSerial variable that will contain the converted value. Line 6 defines a string
that will hold the date string value. Line 9 initializes the string variable to a date format,
using the US regional settings. This may have to be changed on your computer if you are
using a different setting. Line 11 creates a DateSerial from the string value. Line 13 prints
the value using the Format function.

When you run the program you should see the following output.

Date string is 08/15/2006

Output 13.7: Output of datevalue.bas

If you run this program and get a strange date, then the regional settings on your
computer are different than what is shown in this program. For example, if your setting
has the year first, then you will need to change the string format to have the year first in
the string, rather than last. The DateValue function, used in conjunction with the IsDate
function which is covered later in this chapter, is an easy way to get a date from the user
which then can be used for date calculations.

Day Function

The Day function will return the day number from a DateSerial. The Day function
takes a single date serial value and returns an integer representing the day number.

int_value = Day(date_serial)

1. DateSerial: The date serial value.

2. Return: Integer value representing the day of the month.

The Day function returns the same value as DatePart with the day interval
specified.

Hour Function

The Hour function returns the current hour number from a TimeSerial value. The
Hour function takes a single TimeSerial value, or a DateSerial value with a time
component and returns an integer that represents the hour.

186

int_value = Hour(time_serial)

1. TimeSerial: The time serial value.

2. Return: Integer value representing the hour of the day. If the PM specifier is added
to the time value, the hour number returned will be in 24 hour format. That is, 1:00
PM will return 13.

The following program illustrates using the Hour function.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Option Explicit

#Include Once "vbcompat.bi"

Dim As Double myTime

Dim As String myTimeStr

'Create a date string value

myTimeStr = "1:10:23 pm"

'Get the serial date value

myTime = TimeValue(myTimeStr)

'Print the value

Print "Hour is";Hour(myTime)

Sleep

End

Listing 13.7: hour.bas

Analysis: Line 3 includes the extended date and time functions. Line 5 creates a
double-type TimeSerial variable. Line 6 creates a string variable to hold the string time
value. Line 9 initializes the string variable to a time string. Line 11 converts ythe time
string to a TimeSerial using the TimeValue function. Line 13 prints the hour number of the
TimeSerial.

When you run the program you should see the following output.

Hour is 13

Output 13.8: Output of hour.bas

 187

Minute Function

The Minute function returns the minute number from a TimeSerial value. The
Minute function takes a single TimeSerial value, or a DateSerial with a time component,
and returns an integer representing the minute.

int_value = Minute(time_serial)

1. TimeSerial: The time serial value.

2. Return: Integer value representing the minute of the hour.

Month Function

The Month function returns the month number from a DateSerial value. The Month
function takes a single DateSerial value and returns an integer representing the month.

int_value = Month(date_serial)

1. DateSerial: The date serial value.

2. Return: Integer value representing the month of the year.

MonthName Function

The MonthName function returns a string representing the name of the month. The
MonthName function takes an integer representing the month, and an optional flag that
will return a month abbreviation if set.

string_value = MonthName(month_number)

string_value = MonthName(month_number, abbreviate)

1. Month Number: An integer representing the month.

2. Abbreviate: A flag that indicates whether to return an abbreviated month name. If
flag is 0, the full month will be returned. If the flag is 1, the abbreviated month
name will be returned.

3. Return: A string value representing the name of the month. The return value is
based on the current locale settings of the system.

The following program illustrates using the MonthName function.

1

2

3

4

5

6

7

Option Explicit

#Include Once "vbcompat.bi"

Dim As Integer i

For i = 1 To 12

188

8

9

10

11

12

 Print "Month ";Monthname(i);" is abbreviated as ";Monthname(i, 1)

Next

Sleep

End

Listing 13.8: monthname.bas

Analysis: Line 3 includes the extended date and time function. Line 5 dimensions
an integer variable for the following For-Next routine. The For-Next block in lines 7
through 9 call the MonthName function to get the full name, and then is called a second
time with the abbreviate flag set to 1 to get month abbreviation.

When you run the program you should see output similar to the following,
depending on your local settings.

Month January is abbreviated as Jan

Month February is abbreviated as Feb

Month March is abbreviated as Mar

Month April is abbreviated as Apr

Month May is abbreviated as May

Month June is abbreviated as Jun

Month July is abbreviated as Jul

Month August is abbreviated as Aug

Month September is abbreviated as Sep

Month October is abbreviated as Oct

Month November is abbreviated as Nov

Month December is abbreviated as Dec

Output 13.9: Output of monthname.bas

Now Function

The Now function returns a double-type value representing the current system
date and time. The Now function takes no parameters.

double_value = Now

1. Return: A double value representing the current system date and time.

Second Function

The Second function returns an integer value representing the second number of a
TimeSerial value, or a DateSerial with a time component. The Second function takes a
single TimeSerial value.

 189

int_value = Second(time_serial)

3. TimeSerial: The time serial value.

4. Return: Integer value representing the second of the minute.

TimeSerial Function

The TimeSerial function will return a double-type TimeSerial value based on the
passed hour, minute and secondy. The time value returned by TimeSerial has no date
component.

time_serial = TimeSerial(hour, minute, second)

1. Hour: The hour component of the time. The hour is passed in twenty-four format.

2. Minute: The minute component of the time.

3. Second: The second component of the the time.

4. Return: Returns a TimeSerial that is the value of the hour, minute and second
components.

The TimeSerial function works just like the DateSerial function, except that it
returns a time value rather than a date value. You can get both a date and time by
adding a DateSerial value created with the DateSerial function to a TimeSerial value
created with the TimeSerial function. Since the date is contained within the integer
portion of the DateSerial and the time is contained within the fractional portion of the
DateSerial, you can combine the two values by simply adding them. The following
program illustrates this concept.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Option Explicit

#Include Once "vbcompat.bi"

Dim As Double ts, ds, cs

'Get a date serial

ds = Dateserial(2006, 1, 10)

'Get a time serial

ts = Timeserial(13, 10, 42)

'Combine the two

cs = ds + ts

'Print values

Print "Date and time is ";Format(cs, "mm/dd/yyyy hh:mm:ss AM/PM")

Sleep

End

190

Listing 13.9: timedateserial.bas

Analysis: Line 3 includes the extended date and time functions. Line 5 creates
three double-type values, ts which will be the time serial value, ds which will be the date
serial value and cs, which will be the combined date and time serial value. Line 8 gets the
date serial value using the DateSerial function. Line 10 gets the time serial value from
the TimeSerial function. Line 12 adds the two values together to get a combined date and
time serial value. Line 14 uses the Format function to print both the date and time. The
AM/PM specifier is added to the time format string to convert the 24-hour value to a 12-
hour value.

When you run the program you should see the following output.

Date and time is 01/10/2006 01:10:42 PM

Output 13.10: Output of timedateserial.bas

TimeValue Function

The time value function will return a TimeSerial value from a string representing
the time value. The time string can contain either a 24-hour format such as “13:10:42” or
a 12-hour format such as “01:10:42PM”.

time_serial = TimeValue(time_string)

1. Time String: A time string in either 24 or 12-hour formats.

2. Return: A TimeSerial representing the time string.

Year Function

The Year function returns an integer value representing the year number of a
DateSerial value. The Year function takes a single DateSerial value.

int_value = Year(date_serial)

1. DateSerial: The date serial value.

2. Return: Integer value representing the year of the date serial value.

Weekday Function

The Weekday function returns the number of the day of the week. The Weekday
function takes a DateSerial value and an optional flag that represents the first day of the
week.

int_value = Weekday(date_serial)

int_value = Weekday(date_serial, first_day_of_week)

 191

1. DateSerial: The date serial value.

2. First Day of Week: A flag that represents the day number that is regarded as the
first day of the week. The values are the same as those in the DateDiff function.

3. Return: Integer value representing the day of the week.

WeekDayName Function

The WeekDayName function returns a string that is the name of the day. The
WeekDayName function takes an integer representing the day of the week, an optional
flag that indicates whether to return an abbreviated name and an option flag that
indicates the first day of the week.

int_value = WeekDayName(day_number)

int_value = WeekDayName(day_number, abbreviate)

int_value = WeekDayName(day_number, abbreviate, first_day_of_week)

1. Day Number: The day number. The day number is interpreted by the first-day-of-
the-week setting.

2. Abbreviate: If this flag is 1, the function will return an abbreviated name, if 0 then
the full name is returned.

3. First Day of Week: A flag that represents the day number that is regarded as the
first day of the week. The values are the same as those in the DateDiff function.

4. Return: A string value that represents the name of the day of the week. The day
name is based on the computer's locale setting.

The function works juts like the MonthName function with the added first-day-of-
the-week setting.

A Look Ahead

Once you have created the data in your program, whether it be numeric, date or
time data, you will at some point need to format that data. The Format function has all
the capability you need to format these data types, and is the subject of the next
chapter.

192

14 The Format Function

The Format function is a general purpose formatting function that can handle a
wide range of numeric values. Once you understand the capabilities of the function, you
will find yourself using this function for all your formatting routines. The Format function
can handle simple numeric data, date and time values.

string_value = Format(numeric_value, format_string)

The numeric value parameter can any of the numeric values available in FreeBasic.
The format string contains format characters that specify how to format the numeric
value. If the Format string is an empty string, then Format behaves just like the Str
function.

String Format Characters

You can display text within the format string using the general formatting string.
The following table lists the string format characters.

Character Comment

: ? + $ () space Will return as a literal string.

\ Will return the next character in the string
as a literal character.

“text” Will return text within double quotes as a
literal string.

: Used as a separator for time components.

/ Used as a separator for date components.

Table 14.1: String Format Characters

The values listed in the table will return as literal text, and can be used to generate
a string that contains both literal characters and formatted numeric text.

Numeric Format Characters

There are a number of format characters that can be used to format simple
numeric types. The following table lists the format characters.

Character Comment

0 (zero) The zero is a digit placeholder. How the
number is formatted depends on how many
zeros are in the format string and how
many numbers on either side of the

 193

Character Comment

decimal point of the number. If there are
fewer digits than 0's, a leading or trailing
zero are added to the format string. If there
are more digits to the right of the decimal
than there are 0's, then the number is
rounded. The number to the left of the
decimal are not changed.

This format character works in the same
way as the 0 character, except the leading
or trailing zeros are not displayed.

. (decimal point) Will return a decimal point within the
formated string. If the format string only
has #'s to the left of the decimal point, then
numbers smaller than 1 will be displayed
with only a leading decimal point.

% Will multiply number by 100 and return
percentage sign.

, (comma) The comma is used as the thousands
separator. Two adjacent commas, or a
comma right after the decimal point, will
not display the thousands digits and will
round the number.

E- E+ e- e+ These characters are used to format a
string in scientific format. Placing a 0 or #
to either the left or right of the character
determines the number of digits to display
on either side of the exponent sign. The
negative characters are used to display
negative exponents and the positive
characters are used to display positive
exponents.

Table 14.2: Numeric Format Characters

As you can see from the character table, there is a wide range of formatting
options available for formatting numeric data. The following program demonstrates how
to use some of the formatting options.

1

2

3

4

5

6

7

8

Option Explicit

#Include Once "vbcompat.bi"

Dim As Double myValue = 123456.789

Print "Value: ";Format(myValue)

'Print various format string

194

9

10

11

12

13

14

15

16

17

Print "Value as currency: ";Format(myValue, "$###,###,###.##")

myValue = .10

Print "Value: ";Format(myValue)

Print "Value as scientific: ";Format(myValue, "###E+###")

Print "Value with zeros: ";Format(myValue, "00.0000")

Print "Value as percentage: ";Format(myValue, "##%")

Sleep

End

Listing 14.1: format-numeric.bas

Analysis: Line 3 includes the extended date and time function library which also
includes the Format function. Line 5 creates a double value that will be used as the
numeric value in the formatting expressions. Line 7 prints the unformatted value. Line 9
prints the value as a currency value using the $ with commas used to separate the
thousand places and two # characters after the decimal point to round the value. Line 10
sets the double variable to .1 for different formatting. Line 11 prints the unformatted
value. Line 12 prints the value in scientific format. Line 13 prints the value with leading
and trailing zeros. Line 14 prints the value as a percentage.

When you run the program you should see the following output.

Value: 123456.789

Value as currency: $123,456.79

Value: .1

Value as scientific: 100E­3

Value with zeros: 00.1000

Value as percentage: 10%

Output 14.1: Output of format-numeric.bas

Date Format Characters

In the previous chapter you saw some of the date format characters used in the
example programs. The following table lists all the date format Characters and their
meaning.

Character Comment

d Returns the day of the month without
leading zeros.

dd Returns the day of the month with leading
zeros.

ddd Returns the day of the week name as an
abbreviation.

 195

Character Comment

dddd Returns the day of the week name as a full
name.

ddddd Returns the serial date formatted according
the locale setting. Includes the year, month
and day.

m Returns the month number without leading
zeros.

mm Returns the month number with leading
zeros for single month numbers.

mmm Returns the month name as an
abbreviation.

mmmm Returns the month name as a full name.

y Returns the year number formatted as two
digits.

yyyy Returns the year number formatted as four
digits.

Table 14.3: Date Format Characters

The following program demonstrates some of the formatting options for dates.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Option Explicit

#Include Once "vbcompat.bi"

Dim As Double myDate = Now

'Print some formatted dates

Print "Date Serial: ";Format(myDate, "ddddd")

Print "Date with single chars: ";Format(myDate, "d/m/yy")

Print "Date with double chars: ";Format(myDate, "dd/mm/yyyy")

Print "Date with year first: ";Format(myDate, "yyyy/mm/dd")

Print "Date with (­): ";Format(myDate, "dd­mm­yyyy")

Print "Date with (): ";Format(myDate, "dd mm yyyy")

Sleep

End

Listing 14.2: format-date.bas

Analysis: Line 3 includes the date-time and format library definition. Line 5 creates
a date serial values and initializes it to the current date and time using the Now function.
Line 8 prints the serial date using the local settings. Line 9 prints the date as single

196

month and day values with a two-digit year. Line 10 prints the date with two-digit month
and day values and a four-digit year. Line 11 prints the date with the year first. Line 12
using a dash to separate the date components and line 13 uses a space to separate the
date components.

When you run the program you should see the following.

Date Serial: 8/16/2006

Date with single chars: 16/8/06

Date with double chars: 16/08/2006

Date with year first: 2006/08/16

Date with (­): 16­08­2006

Date with (): 16 08 2006

Output 14.2: Output of format-date.bas

Time Format Characters

The time format characters are similar to the date format characters and are used
in much the same way. The following table lists the format characters that you can use
with a TimeSerial value.

Character Comment

h Returns the hour without a leading zero.

hh Returns the hour with a leading zero for
single digit hour numbers.

m Returns the minute without a leading zero.

mm Returns the minute with a leading zero for
single digit minute numbers.

s Returns the second without a leading zero.

ss Returns the second with a leading zero for
single digit second numbers.

ttttt Returns a TimeSerial value formatted as the
local specific time format.

AM/PM

am/pm

Converts the time to a 12-hour format and
adds an am or pm to the return value.

A/P

a/p

Converts the time to a 12-hour format ans
adds an a or p the return value.

Table 14.4: Time Format Characters

The following program demonstrates some ways to format a time value.

 197

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Option Explicit

#Include Once "vbcompat.bi"

Dim As Double myTime = Timeserial(8, 1, 1)

'Print some formatted times

Print "Time Serial: ";Format(myTime, "ttttt")

Print "Time with single chars: ";Format(myTime, "h:m:s")

Print "Time with double chars: ";Format(myTime, "hh:mm:ss")

Print "Time with am/pm: ";Format(myTime, "hh:mm:ss am/pm")

Print "Time with a/p: ";Format(myTime, "hh:mm:ss a/p")

Sleep

End

Listing 14.3: format-time.bas

Analysis: Line 3 includes the extended date and time library. Line 5 creates a time
serial value using the TimeSerial function. Line 8 prints the time using the TimeSerial
format. Line 9 prints the time using single-digit characters. Line 10 prints the time using
two-digit characters. Line 11 prints the time as in 12-hour format using the AM/PM
format, and line 12 also prints the time in a 12-hour format with the a/p format.

When you run the program you should see the following output.

Time Serial: 8:01:01 AM

Time with single chars: 8:1:1

Time with double chars: 08:01:01

Time with am/pm: 08:01:01 am

Time with a/p: 08:01:01 a

Output 14.3: Output of format-time.bas

The Format function has a tremendous amount of functionality, and when working
with numeric data, it is an invaluable resource in formatting. You should some time to
become acquainted with this function as it will save you lot of time when you need to
format your data.

A Look Ahead

At this point you should have a good understanding of the data types available in
FreeBasic. Creating data is only half the story though. You need to display that data and
you need to gather data from your user. The next chapter shows how to make your
screen output look interesting and explains the various ways to gather user input.

198

 199

15 Console Programming

Console programming, or more generally text-based programming, is a
programming style that uses text as the primary medium to display information to, and
to interact with, the user. This is in contrast to GUI programming, where a graphical user
interface is used for display and interaction or a graphics-based program where graphical
objects are used for display and interaction. Text-based programming has its roots in the
early days of computing, when computers did not have graphical displays or the graphics
were too primitive to be of use. Even today, in this era of photo-realistic graphics, text-
based programming remain a vibrant area of application development.

At first glance it may seem that text-based applications would be limited, however
this is not the case at all. Over the years everything from sophisticated word processors
and spreadsheets to games have been developed using only text. Text user interfaces, or
TUIs have been developed that have all the functionality of modern graphical user
interfaces. Many of the most popular games in history, such as Zork, were written
entirely in text. Text-based application are content oriented, and if conveying content is
what you are trying to do, then a text-based application is well suited to the task.

If you are interested in text-based programming you should visit Ascii World located at
http://www.ascii-world.com. Ascii World is a site devoted entirely to text-based
programming, regardless of the programming language.

The Console Screen

The console can be viewed as a grid, where each row contains a certain number
columns. In FreeBasic you can specify how many rows and columns a console can
contain, providing the operating system supports the configuration. The basic console
configuration is 25 rows by 80 columns. Consoles are row oriented, so you specify a
position on the grid using the row followed by the column Each grid location can contain
a single character.

The character set for the console under Windows®, is the Ascii character set. The
Ascii character set contains 256 characters and includes all the numbers, letters and
punctuation you would expect, as well as some extended characters used in European
languages, and a set graphical characters that can used for drawing lines and boxes on
the screen. By using both text and the Ascii graphical characters in a console application
you can create quite sophisticated user interfaces completely in text.

The Console Functions

FreeBasic has a number of console functions that enable you to position text on
the screen, set the foreground and background colors of the text, and to retrieve
information from the console screen. You can also use the mouse in the console for added
functionality. The following table lists the console commands available in FreeBasic.

Function Syntax Comment

Cls Cls mode Clears the screen. If mode is

200

Function Syntax Comment

0 or omitted, entire screen
is cleared. If mode is 1 the
graphics viewport is cleared.
If mode is 2, the text
viewport is cleared.

Color Color foreground,
background

B = Color

Sets the foreground and/or
background color of printed
text.

Color can also be used to
return the current color
attributes, where the
foreground color is the low-
word and the background
color is the high-word.

Csrlin B = Csrlin Returns the row that the
cursor currently occupies.

Format B = Format (numeric,
format_string)

Formats a numerical
expression according to
format_string.

Getmouse Getmouse col, row, wheel,
button

Returns the current position
of the mouse cursor in row,
col, the current wheel state
and button state.

Locate Locate row, column,
cursor_state

Positions the cursor on the
row and column. If
cursor_state is 0, cursor is
hidden. If 1, cursor is shown.

Pos B = Pos Returns the current column
of the cursor.

Print

?

Print expression

Print expression,

Print expression;

? expression

? expression,

? expression;

Prints expression to the
screen. Expression can be
text, a string variable or
numeric variable. A comma
at the end of the print string
will print a tab space with
no carriage return. A semi-
colon will not print a
carriage return. If no comma
or semi-colon, a carriage
return is printed.

Print Using Print Using format_string,
expression1

Print Using format_string,
expression1,

Print Using format_string,
expression1;

Print expression to the
screen using a format string.
Print Using has some known
bugs and should not be
used. Use format instead.

 201

Function Syntax Comment

Screen B = Screen(row, col,
color_flag)

Screen returns the ascii
character code at row and
column position if color_flag
is 0. If color_flag is 1, Screen
returns the color attribute.

You can determine the
background color with
background = attribute
shr 4 and the foreground
color with foreground =
attribute and &hf.

Spc Spc columns Causes next print statement
to skip number of columns.

Tab Tab column Sets column for next print
statement.

View Print View Print first_row To
last_row

Sets printing area of screen.

Width Width columns, rows Sets the the number of
columns and rows of the
console window.

Table 15.1: Console Commands

Console Colors

The default color scheme for the console is white text on a black background. You
can change the color scheme by using the Color function to change either or both the
foreground and background color of printed text. For the console, the color numbers
range from 0, black, to 15, bright white. The following list enumerates the color numbers
that can be used in the console.

● 0: black

● 1: blue

● 2: green

● 3: cyan

● 4: red

● 5: magenta

● 6: yellow

● 7: white

● 8: gray

● 9: bright blue

● 10: bright green

● 11: bright cyan

202

● 12: bright red

● 13: bright magenta

● 14: bright yellow

● 15: bright white

The colors listed above may vary, depending on your graphics card and monitor,
but they should approximate those listed. In addition to printing colored text, you can
also set the background of the entire console screen by setting the background color
using the Color function, and then using Cls to clear the screen. When the screen is
cleared, the background will be in the selected color.

Color is useful for enhancing the look of your application, but you should never rely on
color alone to indicate critical information in your application. Approximately 15 million
people are color blind just in the United States. Depending on the level of color
blindness, an individual may miss critical information if it is displayed using color alone.
It is good practice to identify critical information through the use of text manipulation,
such as a pop-up box, so that the information won't be missed by a color blind user.

Each character position on the console screen stores the character value, along
with the current color attributes which can be determined using the Screen function. If
color_flag is 0, Screen will return the ascii code of the character at the selected row and
column. If color_flag is 1, Screen will return the color attribute. Colors are stored as byte
values with the high 4 bits indicate the background color and the low 4 bits indicate the
foreground color, the color of the text. You can determine the color attributes by using
the following formulas.

Foreground = attribute And 15

Background = attribute Shr 4

The following program illustrates how you might use these functions in a program.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Option Explicit

Dim As Integer clr, ccode

'Set the color

Color 15, 0

'Get the current color

clr = Color

'Print foreground and background color numbers

Print "Current color setting:"

Print "Foreground: ";Loword(clr)

Print "Background: ";Hiword(clr)

 203

15

16

17

18

19

20

21

22

23

24

25

26

27

Print

'Get the current character position at 1, 1

ccode = Screen(1, 1)

Print "Character code at 1,1 is";ccode;" which is ";Chr(ccode);"."

'Get the color attributes at 1,1

clr = Screen(1, 1, 1)

Print "Foreground color at 1,1:";clr And 15

Print "Background color at 1,1:";clr Shr 4

Sleep

End

Listing 15.1: color.bas

Analysis: Line 3 dimensions the working variables, clr which contains the color
attribute of a text position and ccode which is the character code. Line 6 sets the current
color to bright white, 15, with a black background, 0. Line 9 stores the current clr setting
in the variable clr. Lines 13 and 14 print the current color numbers to the screen using
the Loword and Hiword macros. Line 17 stores the character code at row position 1,
column position 1 in ccode. Line 18 prints both the character code and the corresponding
character to the screen. Line 21 retrieves the color attribute for the same position, and
lines 22 and 23 print the color values using the formula listed above. The program is
closed in the usual way.

When you run the program you should see the following output.

Current color setting:

Foreground: 15

Background: 0

Character code at 1,1 is 67 which is C.

Foreground color at 1,1: 15

Background color at 1,1: 0

Output 15.1: Output of color.bas

The display will be in bright white, with a black background. As you can see, you
have tremendous control over the appearance of console text and can easily determine
the attributes of the text.

Positioning Text

You can position text anywhere on the console screen using the Locate statement.
The Locate statement sets the text cursor position for subsequent printing of text. To

204

print to a certain location on the screen, you must first position the text cursor using the
locate statement, then follow that command with a print statement. You can turn the text
cursor on and off by using the optional cursor flag of the locate statement. 1 turns the
text cursor on, and 0 turns the cursor off. This is useful if, for example, you are using the
mouse for console input.

The Print command will update the current cursor position. You can obtain the
current row setting by using the Csrlin function and the current column setting by using
the Pos function.

Printing Text

The Print statement is used to print text to the screen. The location and color of
the text is determined by the current cursor setting and the last color statement. Using
the Print statement with a semi-colon after the print string will position the text cursor to
the end of the string. Using a comma after the print string will position the text cursor to
the next tab location. A Print statement without either a semi-colon or comma, will insert
a carriage return and/or line feed positioning the cursor at the beginning of the next line.

You can format the output of numeric text using the Print Using command,
although this is a deprecated function and has some known, minor bugs. The function is
available mainly for backward compatibility with older programs. For new programs, you
should use the Format function, which is covered in a separate chapter later in this book.
For details on the Print Using function see the FreeBasic documentation wiki4. The
function will not be covered in this book.

You have already seen the Spc and Tab functions in several of the example
programs. The Spc function will cause the next print position to skip a number of columns
while the Tab function will put the text cursor at the next tab position. Both of these
functions are useful for printing tabular data to the screen.

Determining and Setting the Size of the Console

You can determine the current console size, or set the number of rows and columns
of the console by using the Width function. To determine the current console size, use the
Width function without any parameters as shown in the following code snippet.

MyInt = Width

columns = Loword(myInt)

rows = Hiword(myInt)

The number of columns of the console is stored in the low word of the return
integer value while the number of rows is stored in the high word of the integer. To set
the console size, use the Width function with the number of desired columns and rows, as
illustrated in the following code snippet.

Width 80, 25

This will set the console to 80 columns by 25 rows. The standard console
configuration is 80 columns by 25 rows, however, if you need a different size for your
4At the time of this writing, the Print Using wiki page is loacted at
http://www.freebasic.net/wiki/wikka.php?wakka=KeyPgPrintusing.

 205

application you can use the Width function to check if the console is the appropriate size
and then resize if necessary. Setting the console size will reset the cursor position to row
1 and column 1, so you may need to issue a Locate statement to reset the cursor position
after the change.

The following program shows how to use the Width function to get the consile size
information and reset the console.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Option Explicit

Dim As Integer consize, rows, cols

'Get the current console size

consize = Width

rows = Hiword(consize)

cols = Loword(consize)

Print "Current Rows =";rows

Print "Current Columns =";cols

Print "Press any key..."

Sleep

Cls

'Resize console if necessary

If rows > 25 Then

 Width 80, 25

End If

'Get the new console size

consize = Width

rows = Hiword(consize)

cols = Loword(consize)

Print "New Rows =";rows

Print "New Columns =";cols

Sleep

End

Listing 15.2: width.bas

Analysis: Line 3 dimensions three variables, consize that will contain the Width
return value, rows which will contain the number of rows and cols which will contain the
number of columns. Line 6 gets the current console size. Line 7 retrieves the number of
rows using the Hiword macro and line 8 retrieves the number of columns using the
Loword macro. The current setting is printed to the screen in lines 9 and 10. The Sleep
command is used in line 12 to pause the program and wait for a key press from the user.
Line 13 clears the screen.

206

Lines 16 through 18 check to see if the number of rows is greater than 15 and if
true, then resets the console to 80 columns by 25 rows. Line 21 checks the new console
size and the current rows and columns are retrieved in lines 22 and 23. The new values
are printed in lines 24 and 25. The program is then closed in the usual way.

When you run the program you should see output similar to the following.

Current Rows = 25

Current Columns = 80

Press any key...

Output 15.2: Output a of width.bas

New Rows = 25

New Columns = 80

Output 15.3: Output b of width.bas

Output a shows the console setting when the program starts, and Output b shows
the console setting after checking the console size. In this run the default setting was the
desired size, so the Width statement did not need to be executed.

Getting User Input

If you need to interact with the user, then you will need to get user input. There
are several ways to collect user input which are listed in the following table.

Function Syntax Comment

Inkey B = Inkey Returns a key from the
keyboard buffer as a string.
If an extended key is
pressed, the return string
contains character 255 +
key character. Inkey does
not wait for keyboard input.

Input Input variable_list

Input “prompt”; variable_list

Input “prompt”,variable_list

Input will gather input for
one or more variables listed
in variable_list. The
variables should be
separated with commas.
The type of variable
determines how input will
collect the data. If the data
type of the variable is a
string, Input will convert the
input data to a string. If the
data type of the variable is

 207

numeric, Input will convert
the data to a number. If an
invalid numeric string is
entered, Input will attempt
to convert as many
characters as possible to a
number. If no characters can
be converted to a string,
Input will return 0. If a semi-
colon is used with Input, a
question mark will be
displayed after the prompt.
If a comma is used, a
question mark will not be
printed.

Input() B =
Input(number_of_characters

)

Input() will return a string
containing number of
characters entered.

Getkey B = GetKey Returns the ascii code of the
current key in the keyboard
buffer. Getkey will wait for a
key. If an extended key is
pressed, the first character
is skipped, character 255,
and the second character is
returned.

Line Input Line Input string_variable

B = Line Input “prompt”;
string_variable

B = Line Input “prompt”,
string_variable

Line Input will return a line
of text from the keyboard.
All characters up to, but not
including the enter key are
read. An optional prompt
can be displayed with either
a question mark, using a
semi-colon, or no question
mark when using a comma.

Winput() B =
Winput(number_of_characte

rs)

Wide string version if
Input().

Table 15.2: Input Functions

Inkey

Inkey is useful for polling the keyboard buffer in a loop and can be used in games
or in text-based user interfaces since Inkey does not with for a key to be pressed. This
allows you to process other events within your program, and then take action if a key has
been pressed. If the buffer is empty, Inkey will return an empty string. If a key is waiting
in the buffer, Inkey will return a string that is either one or two character long. Keys can
be either the normal printable keys, such as A or 1, or an extended key such as the Up
Arrow or F1. Normal keys return 1 key code, while the extended keys return 2 key codes,
with the first code being character 255.

208

The following program will display the character and ascii code(s) of both normal
and extended keys.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Option Explicit

Dim As String key, char

Dim As Integer i

Do

 'Check keyboard buffer

 key = Inkey

 'If key has been pressed

 If Len(key) > 0 Then

 'Clear the last message

 Locate 1, 1

 Print Space(79);

 'Reposition cursor

 locate 1,1

 'Print current key codes

 For i = 1 To Len(key)

 char = Mid(key, i, 1)

 Print "Character: ";char; " Code: ";Asc(char); " ";

 Next

 End If

 Sleep 10

Loop Until key = Chr(27)

End

Listing 15.3: inkey.bas

Analysis: Line 3 dimensions two string variables, key which will be the return value
from Inkey and char which will be the individual characters. The integer variable i in line
4 will be used in the For-Next to extract the individual characters fro the key variable.
Line 6 through 23 define a keyboard processing loop using. Line 8 checks for keyboard
input. Line 10 checks to see if the length of key is greater than zero, indicating that Inkey
returned a key. Lines 12 through 15 clear the previous output line that may have been
printed. Lines 17 through 20 extract each character from the key variable, loading the
actual character into the variable char in line 18 and then printing the corresponding ascii
code to the screen in line 19.

The Sleep command is used in line 22 to allow the operating system to process
other events. If you are using an extended loop such as this keyboard input loop, you
should always insert a Sleep # command in the loop to allow the operating system to
process background tasks, otherwise your program may consume 100 percent of the
operating system's time.

 209

Line 23 then checks to see if the escape key was pressed, which is ascii code 27,
and then exits the loop if the key was pressed. The program is then closed using the end
statement.

A sample output is shown below.

Character: Code: 255 Character: ; Code: 59

Output 15.4: Output of inkey.bas

The output shows the codes when the F1 key is pressed. Once you know the key
codes, then you can build Const statements to trap for certain keys. For example, to trap
for the F1 key, you would create the Const statement shown in the code snippet below.

Const F1_key = Chr(255) & Chr(59)

You can then check the Inkey return to see if the key returned natches the F1 key.

If key = key_F1 Then

'Then do something

End If

You can set up any number of keys in this manner. The F1 key is usually used to
display help content, and in your application you could display a help screen by executing
the help display code in the body of the If statement. If you are coding a game, you might
want to use the arrow keys to move your character player around the screen, by setting
up the arrow key constants and then adding a If-Then-Elseif ladder to process the arrows
keys.

Getkey

Unlike Inkey, Getkey does wait for the user to press a key. If an extended key is
pressed, Getkey will discard the first character and return the second character. Getkey is
used in situations where you are not interested in the extended key set and you need to
pause the program to gather user input.

Input

The Input function is used to gather information from the user that will be loaded
into one or more variables. The data type of the variable determines how the user input
is processed. If the variable is a string, Input will process the information as a string; if
the variable is a numeric data type, Input will try to convert the information to a number.
The variables must be separated using commas.

You can display a prompt string with Input by enclosing a literal string before the
variable list. If a semi-colon is used after prompt string, a question will be displayed after
the prompt. If a comma is used after the prompt string, no question mark is printed.

If you are supplying multiple variables to Input, then the user will need to enter the
values separated by either spaces or commas. The spaces and commas are not returned

210

by Input. If you need to process either spaces or commas, then you need to use Line
Input rather than Input.

Line Input

Line Input will return a single string up to but not including the enter key. That is,
Line Input expects a single string variable, rather than multiple variables. Line Input will
read both spaces and commas in the entered string. Like Input, you can use a semi-colon
to display a question mark at the end of the prompt string. Unlike Input however, you can
use either a literal string or a string variable for the prompt. Line Input returns the user
input as a string and does not convert numeric strings to numbers.

Using the Mouse

Another way to get user input is to use the mouse. The Getmouse function will
return the current zero-based row and column of the mouse as well as the state of the
buttons and mouse wheel. Since the rows and columns are zero-based, you will need to
add 1 to the values to map the return values to the screen

The current state of the mouse wheel as an integer that starts at zero when the
program starts and will return either a more positive number if the mouse wheel is turned
in a forward direction and a more negative number if the mouse wheel is turned in the
reverse direction. Normally, you would store the mouse wheel value at program start,
and then take an action based on the offset value returned by Getmouse. For example, to
scroll some text, you may scroll up if the wheel number is moving in the positive direction
and scroll down if the wheel number is moving in the negative direction.

You can also determine which buttons have been pressed by checking the button
return value. Getmouse supports three buttons, left and right and a middle button, which
often doubles as the mouse wheel. You can determine which button has been pressed by
using the following formulas.

● Left button = button And 1

● Right button = button And 2

● Middle button = button And 4

Button is the value returned by the Getmouse function. Not only can you check for
single button presses, but you can also check to see if both button have been pressed by
checking each button state simultaneously. There is no way to check for a double click
natively however, so you will need to create your own timing code to determine if a
button has been double-clicked.

The following program illustrates using the Getmouse functions.

1

2

3

4

5

6

Option Explicit

'Mouse return values

Dim As Integer mx, my, oldmx, oldmy, mwheel, mbuttons

'Turn off text cursor

 211

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Locate ,,0

Do

 'Get mouse info

 Getmouse mx, my, mwheel, mbuttons

 'Zero based so add 1

 mx += 1

 my += 1

 'Check to see if we have new information

 If (mx > 0) And (my > 0) then

 Locate 1, 1

 'Print current row, column and wheel setting

 Print "Row:";my;" Col:";mx;" W:";mwheel;" BT:";

 'Check for button press

 If mbuttons And 1 Then Print "L";

 If mbuttons And 2 Then Print "R";

 If mbuttons And 4 Then Print "M";

 Print " "

 'Clear old cursor

 Locate oldmy, oldmx

 Print chr(32);

 'Print new cursor

 Locate my, mx

 Print Chr(15);

 'Save the old values

 oldmx = mx

 oldmy = my

 End If

 Sleep 10

Loop Until Inkey$<>""

'Turn on cursor

Locate ,, 1

End

Listing 15.4: con-mouse.bas

Analysis: Line 4 creates the mouse parameter working variables. Mx and my are
the current column and row returned by the Getmouse function. Oldmx and oldmy are
the old column and row settings that are used to erase the mouse cursor character that is
displayed on the screen. Mwheel is the current mouse wheel setting while mbuttons is
the current button state. Line 7 uses the Locate statement to turn off the text cursor. Line
8 through 35 are the mouse input loop that polls the mouse. Line 10 uses the Getmouse
function to return the current mouse state information. Since Getmouse returns the row
and column as a zero-based value, lines 12 and 13 add 1 to the value to map the return
value to the actual screen coordinates. Line 15 checks to see if the mouse is still within
the console screen. If the mouse is outside the console screen, Getmouse will return -1
for the row and column values. Since the program added 1 to these values, if the mouse

212

is outside the console window, the mx and my values will be 0; that is, -1 + 1 = 0. You
should always check to make sure the mouse is still inside the console window before
interacting with the mouse.

Lines 16 and 18 prints the current row, column and wheel settings to the console
screen. Lines 20 through 22 check to see what mouse button, if any, has been pressed
and prints the mouse button id to the screen. L is the left mouse button, R is the right
mouse button and M is the middle button. Lines 25 and 26 erase the old mouse location
indicator, an asterisk that will follow the mouse cursor on the screen. Lines 28 and 29
then print the asterisk at the new mouse location. Lines 31 and 32 save the current mx
and my values in oldmx and oldmy, to use in the next loop iteration.

The Do-Loop is exited in line 35 when any key is pressed. Line 27 turned the text
cursor back on and the program is closed with the End statement in line 39.

When you run the program you should see something similar to the following.

Row: 2 Col: 4 W: 2 BT:L

 ☼

Output 15.5: Output of con-mouse.bas

If the mouse does not work in the console window, then you will need to turn off
the Quick Edit mode of the console. Right click the title bar and select Properties. Under
Edit Options, uncheck the QuickEdit mode. If a pop-up window appears, select Save
Properties for Future Windows with Same Title, then click the OK button. The mouse
should not work in the console window.

Creating a Text View Port

You can create a text view port using the View Print statement. A text view port
can be thought of as a window -within-a-window, where all text operations occur. You
define a view by passing the beginning row and ending row to the View Print command.
Once the command has been issued, all subsequent text operations occur within the view
port.

The following program creates a 10 line view port and prints some text within the
view, which can be scrolled using the mouse wheel. If the mouse does not work within
the console window, you will need to turn off the QuickEdit mode as described above.

1

2

3

4

5

6

7

8

9

Option Explicit

'Create paragraph

Dim Shared As String * 80 myText(1 To 19) => { _

" Lorem ipsum dolor sit amet consectetuer id a ut magna Vestibulum.", _

"Id elit justo pretium commodo vitae convallis urna magnis mattis ", _

"tempor. Duis vitae id semper euismod dolor wisi turpis leo dolor in. ", _

"Neque non Vivamus ac eget nunc sagittis ut mauris at orci. Tincidunt ", _

"ipsum habitasse accumsan leo iaculis et vitae congue vitae malesuada. ", _

 213

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

"Wisi sem Curabitur id ut ipsum adipiscing facilisi elit In id. Et urna.", _

" Lorem ipsum dolor sit amet consectetuer eleifend Suspendisse sem ", _

"lacus iaculis. Wisi feugiat mus augue parturient et felis Pellentesque ", _

"wisi et nec. Vitae metus senectus a dolor Nullam amet accumsan integue ", _

"nonummy id. Sed justo in fames turpis justo platea ultrices est ", _

"convallis vel. Interdum ut Morbi enim ut Vestibulum senectus lacinia", _

"Sed congue metus.", _

" Lorem ipsum dolor sit amet consectetuer lacinia molestie wisi", _

"semper pretium. Et gravida congue volutpat ac Maecenas elit Nunc ", _

"orci Curabitur lobortis. Felis tincidunt nonummy vitae at ut et ", _

"et montes pellentesque Donec. Vitae elit habitant nunc cursus ", _

"ullamcorper risus sagittis tempus consectetuer velit. Est ", _

"Vestibulum non id pulvinar Nam vitae metus id congue massa. ", _

"Phasellus."}

Dim As Integer idx = 1, mx, my, oldwheel, mwheel, delta

Dim As Integer vtop = 10, vbot = 20

Sub PrintText(tidx As Integer)

 Dim As Integer i, tbot

 'Clear view port to black

 Color , 0

 Cls

 'Calc text that will fit into view port

 tbot = tidx + 10

 If tbot > 19 Then tbot = 19

 For i = tidx To tbot

 Print Rtrim(myText(i))

 Next

End Sub

'Set the console size

Width 80, 25

'Turn off text cursor

Locate ,,0

'Clear screen to blue

Color , 1

Cls

'Create view port

View Print vtop To vbot

'Print the current text

PrintText idx

'Get the current wheel setting

Getmouse mx, my, oldwheel

214

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

Do

 'Get mouse wheel info

 Getmouse mx, my, mwheel

 If mwheel <> oldwheel Then

 'Get delta amount

 delta = oldwheel ­ mwheel

 'Use delta amount to adjust text index

 idx = idx + delta

 'Make sure text isn't out of bouns

 If idx > 19 Then idx = 19

 If idx < 1 Then idx = 1

 'Print text

 PrintText idx

 'Save the current mouse wheel value

 oldwheel = mwheel

 End If

 Sleep 10

Loop Until Inkey<>""

'Turn on text cursor

Locate ,,1

End

Listing 15.5: view-print.bas

Analysis: Line 4 creates a single-dimension array that initialized to some random
text. The text will be printed in the view port created later in the program. Line 25 and 26
creates the working variables. Idx is the current line index into the myText array. Mx and
my are the mouse column and rows, which are not used in the program, but are needed
for the Getmouse function. Oldwheel and mwheel are the last and current wheel position
variables. Delta is the difference between the old wheel position and the current wheel
position. Delta is used to calculate the offset for the idx variable. Line 26 dimensions two
variables, vtop and vbot which are the top and bottom of the view port.

Line 28 through 40 define the PrintText subroutine which will print the array text to
the view port. The tidx parameter, is the current value contained within the idx variable,
and points to the current line position in the text array. Line 29 creates two variables, i
which is used in the following For-Next block and tbot which is used to calculate how
many rows of text to print. Line 32 and 33 clear the view port. Line 35 calculates the
number of lines to display. Tidx contains the start line in the text array, and tbot contains
the end line in the text array. Line 36 checks to make sure that the end line contained
within tbot does not point past the end of the array. Line 37 through 39 print the text to
the view port. Since the view port is 10 lines, the code prints a 10 line “window” from the
array to the view port.

Line 43 sets the width of the console, and lines 45 through 48 clear the main
console window to a blue color. At the point the view port has not be created so these
commands apply to the console widow as a whole. Line 505 creates a view port that

 215

starts at vtop and extends to vbot, inclusive. All text commands issued after the View
Print command will go now to the view port. Line 52 prints the initial 10 lines of text. Line
54 gets the initial value of the mouse wheel, for use later to calculate the delta value.

Line 55 through 71 define the mouse input loop. Line 57 gets the current mouse
wheel value. Line 58 checks to see if the new value is different than the old value, and if
they are different, this means the mouse wheel has been moved. Line 60 calculates the
delta, or changed value, between the old mouse wheel setting and the new mouse wheel
settings. Using this technique, you can calculate how to scroll the text, because the value
will be either positive or negative depending on whether the mouse wheel is moved
forward or backward.

Line 62 uses the delta value, to update the idx variable, which is the pointer to the
current top line in the text array. If delta is positive, idx will move toward the end of the
array, which means that the text will scroll up. If delta is negative, idx will move toward
the beginning of the array, so the text will scroll down. Line 64 and 65 make sure that idx
does not point past the beginning and end of the array. The current text block is then
printed in line 67. Line 69 then saves the current wheel value in the oldwheel variable, to
be used in the next delta calculation.

If a key pressed the loop is exited in line 72 and then program is closed with an
End statement.

When you run the program you should see output similar to that shown below.

Sed congue metus.

 Lorem ipsum dolor sit amet consectetuer lacinia molestie wisi

semper pretium. Et gravida congue volutpat ac Maecenas elit Nunc

orci Curabitur lobortis. Felis tincidunt nonummy vitae at ut et

et montes pellentesque Donec. Vitae elit habitant nunc cursus

ullamcorper risus sagittis tempus consectetuer velit. Est

Vestibulum non id pulvinar Nam vitae metus id congue massa.

Phasellus.

216

Output 15.6: Output of view-print.bas

When you run the program you will see a blue screen with a black view port in the
middle with some text. Scroll the mouse wheel, and the text will scroll. Move the mouse
wheel forward and the text will scroll down, move the mouse backward and the text will
scroll up. The text will stop scrolling when the beginning or the end of the text is reached.
As you can see, using the view port command along with the Getmouse function is a
simple way to add a great deal of functionality to your text-based programs.

A Look Ahead

Now that you can create variables and gather input, you need to see how to build
control structures to act on this data. In the next chapter you will see the various control
structures that are available in FreeBasic.

 217

16Control Structures

Controls structures allow you to change the flow of your program, to execute
different parts of your program based on certain criteria and to iterate through code
blocks. Control structures fall into two categories; decision-making structures such as the
If and Select Case statements, and looping structures such as the For-Next and Do-Loop
statements.

The decision-making, or branching structures, allow you define criteria based on
data values, and then execute code based on those data values. If a variable is less than
5, you can execute one code block, and if the variable is greater than 5, you can execute
a different code block, and if the variable is equal to 5, you can execute yet another code
block. Being able to make decisions within your program is crucial for implementing the
logic that your program describes.

The looping structures are also necessary elements to any program, since you will
often need to process groups of information in a loop, such as reading a disk file or
getting input from the user. Data manipulation almost always involves looping, since you
will need to iterate through data structures to gather specific information that you will
need in your program. FreeBasic has a rich set of both decision-making and looping
structures.

A Program is a State Machine

You can think of a program as a state machine, where at any given moment, the
program is in a particular state, or condition, which changes over time. This may sound a
bit cryptic, so an example may help illustrate what this means. Suppose it is getting close
to evening and you realize that you are getting hungry. Call this the hungry state. Your
stomach is empty, and your brain is telling you to get some food. You run down to the
local hamburger joint, get a nice juicy double cheeseburger and consume it. You are now
full, so call this the satisfied state. This is basically how a state machine operates. At one
moment, your stomach is empty and the state is hungry and at the next moment, your
stomach is full and the state is satisfied. You started in one state (hungry), executed a
branching action (drove to the burger joint) and ended in another state (satisfied).
Programs do much the same thing.

A variable is like your stomach. If the variable is empty, the program is in the
empty state; that is, there is no meaningful data within the variable, so the program
cannot do any meaningful work with that data. Programs are designed to do something,
so you need to transition from the empty state to the satisfied state, by executing a
branching statement (driving down to the burger joint) in order to initialize the variable
with data. Once the variable is initialized (you ate the hamburger) the program changes
state and now you can do something meaningful, since you now have meaningful data.

Control structures are the transition mechanisms that enable you to change the
state of your program. If you are writing a game, you can use a Do-Loop to wait on user
input. Once the user presses a key, you can then use an If or Select Case statement block
to act on this key press. The program moves from a waiting state, to an action state, and
then back to a waiting state, until another key is pressed or the program terminates. To
effectively use control structures within your program, you must keep in mind the various
states of your program, both before and after state transitions.

218

The If Statement Block

You can think of the If statement block as a question that requires a True or False
answer. The answer determines which section of code your program will execute. Since
computers only work with numbers, you frame the question as a conditional equation
that will result in either 0 for False or non-zero for True. The following table lists the
conditional operators that you can use within an If statement.

Operator Syntax Comment

Equal If var = 5 Then If operand on both sides of
the = are equal, then
execute code after Then
statement.

Inequality If var <> 5 Then If operands on both sides of
the <> are not equal, then
execute code after Then.

Less Than If var < 5 Then If first operand is less than
second operand then
execute code after Then.

Less Than or Equal If var <= 5 Then If first operand is less than
or equal to second operand,
then execute code after
Then.

Greater Than If var > 5 Then If first operand is greater
than second operand, then
execute code after Then.

Greater Than or Equal If var >= 5 Then If first operand is greater
than or equal to second
operand then execute code
following Then.

Table 16.1: Logical Operators

You can mix arithmetic, logical and conditional operators, as well as parenthesis,
within an If statement. The compiler evaluates the conditional statements from left to
right, taking into account the precedence of the operators. For example, all of the
following code snippets are legal If statement constructs.

If var1 = 5 Then

If (var1 = 5) And (var2 < 3) Then

If var1 + 6 > 10 Then

All of these conditional expressions are valid constructs, and if they evaluate to
True, or non-zero, then the code following the Then clause will be executed.

 219

Using Bitwise Operators in an If Statement

Remember that the operators And, Or and Not are bitwise operators. That is, they
return a value based on the bitwise operation that they perform. You should take care
when using bitwise operators within an If statement to make sure that the result will
evaluate correctly. Take the second code snippet listed above. If var1 = 5, the compiler
will return True, or -1 for the expression. If var2 is less than 3 then the compiler will return
True or -1 for this expression. The compiler will then evaluate the And operator with -1
And -1 returning -1. Since -1 is non-zero, or True, the code following the Then will be
executed. If either of the statements within the parenthesis evaluate to 0, then And will
return 0, which is False, and the code following the Then clause will be skipped. When
using bitwise operators you should frame the conditional expressions on either side of
the bitwise operator so that they return either True or False. This will give you consistent
results in your evaluations.

The Not Problem

The Not bitwise operator can be a problem in an If statement. You may be used to
writing If Not var Then, with Not performing a logical, rather than a bitwise operation.
In FreeBasic Not performs a bitwise operation, not a logical operation. If var were to
contain the value of 3, then Not 3 is -4, which will be regarded as a True result and the
code following the Then will be executed, which is probably not what you wanted. Instead
of writing If Not var Then, you should write If var <> 0 Then.

The Single-Line If Statement

The basic form of the If statement will execute a single statement if the conditional
expression evaluates to True.

If <expression> Then <statement>:<statement>...

In this form, <expression> can be a single or compound expression and
<statement> can be more than one statement separated with : or colons. The following
program demonstrates the syntax of the single-line If.

1

2

3

4

5

6

7

8

9

10

11

12

13

Option Explicit

Dim As Integer myInt = 1

If myInt Then Print "This is the first statement." _

 :Print "This is the second statement."

myint = 0

If myInt Then Print "This is the first statement." _

 :Print "This is the second statement."

Sleep

End

Listing 16.1: if-single.bas

220

Analysis: Line 3 creates an integer value and initializes the variable to 1. Line 5
uses a single-line If to evaluate the variable. Since myInt is one, which evaluates to True,
the compound statement following the Then clause if executed. In line 8, myInt is set to
0. The If statement in line 9 evaluates the variable, which is now 0 or False, so the
compound statement following the Then clause is not executed.

When you run the program you should see the following output.

This is the first statement.

This is the second statement.

Output 16.1: Output of if_single.bas

You will notice that there is only one set of print lines in the output, since the
second If evaluated to False and the print statements were never executed.

The If Code Block

A better way to group multiple statements within an If is to use the If-End If code
block. By separating the statements inside a code block, it is much easier to read and to
debug if necessary.

If <expression> Then

<statement>

<statement>

...

End If

The block If statement operates in the same manner as the single-line If. If
<expression> evaluates to True, then the statements between the If and End If are
executed.

Nested If Statements

At times it may become necessary to nest If statements in order to better describe
the decision making process of the evaluation. While the If statement can handle multiple
arguments within an expression, there are times when you may want to incrementally
check for certain ranges of values which you can do using a nested If block.

If <expression> Then

<statement>

...

If <expression> Then

<statement>

<statement>

...

 221

End If

End If

It is important to close each block properly when opened by an If to avoid compiler
or logical errors. Compiler errors are fairly easy to fix, while logical errors can be tricky to
track down and correct. The best way to make sure you are closing the blocks properly is
to indent the nested If statements and then indent the matching End If statements at the
same level. In the example above, the indentation tells you at a glance which End If goes
with which If.

The Else Statement

When an If expression evaluates to True, the statements following the Then will
execute. If the expression evaluates to False, then the statements following the If will
execute. However, there are times when you will want to execute a different set of
instructions if the If evaluates to False, rather than just continuing on with the program.
The Else statement allows you code one or more statements to handle the False case of
an If evaluation.

If <expression> Then

<statement>

<statement>

...

Else

<statement>

<statement>

...

End If

The If-Else-End If construct allows you to handle both the True and False cases of
an If evaluation. One example of using this format is when you try to open a file. If the
Open succeeds, then you can process the file in the statements following the Then
clause. If the Open fails, you can display an error message to the user in the Else block,
set a flag that indicates the file could not be opened or End the program at this point.
How you handle the exception depends on the needs of your program, but the Else
statement allows you handle these types of program exceptions.

The ElseIf Statement

The ElseIf statement enables you to create an “If Ladder” construct, where you can
test a series of conditions much like the rungs of a ladder. FreeBasic will evaluate the
expressions in order, from top to bottom, and then execute the first series of statements
that evaluate to True, skipping the rest of the ElseIf tests. Elseif can be used in
conjunction with a final Else statement to execute a default set of statements if none of
the expressions in the ladder evaluate to True.

If <expression> Then

<statement>

<statement>

222

...

ElseIf <expression> Then

<statement>

<statement>

...

Else

<statement>

<statement>

...

End If

You start the block with a standard If statement, then add any additional ElseIf
statements as necessary, and optionally, as in the example, you can add an Else
statement as a default handler. The order of an If-ElseIf block can be important. The
compiler will evaluate the first If statement, and if the expression is False, it will then drop
down to the next ElseIf and evaluate that expression, and continue on down the ladder
until an End If or Else is encountered. If your expressions are range values or compound
statements then you need to make sure that the expression ranges don't overlap
otherwise you may execute the wrong set of Then statements. The following program
shows an example of using the ElseIf statement.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Option Explicit

Randomize Timer

Dim As Integer myNumber, i

For i = 1 to 10

 myNumber = Int(Rnd * 10) + 1

 'Build an if ladder

 If (myNumber > 0) And (myNumber < 4) Then

 Print "Number is between 1 and 3:";myNumber

 Elseif (myNumber > 3) And (myNumber < 8) Then

 Print "Number is between 4 and 7:";myNumber

 Else

 Print "Number is greater than 7:";myNumber

 End If

Next

Sleep

End

Listing 16.2: elseif.bas

Analysis: Line 3 initializes the random number generator with the Timer statement.
Line 5 creates two integer variables, myNumber which will hold a random integer

 223

between 1 and 10 and i, which will be used in the For-Next statement. Line 7 opens the
For-Next block which will execute the code between the For and Next 10 times. Line 8
uses the Rnd function to generate a random number in the rand 1 to 9. Since Rnd returns
a double precision number, the Int function is used to convert the value to an integer.
Line 10 through 16 define the If ladder. Line 10 checks to see if the random number is
between 1 and 3; that is, if the number is 1 it will be greater than 0 and less than 4.
Using > and < in this manner defines a range of values to test. Line 12 uses an ElseIf to
test for the next range of values between 4 and 7 inclusive. Line 14 defines the default
code handler using an Else statement. If the If and ElseIf evaluate to False, then the Else
statement will execute. Line 17 closes the For-Next block.

When you run the program you should see output similar to the following.

Number is between 1 and 3: 3

Number is between 4 and 7: 7

Number is between 1 and 3: 1

Number is between 4 and 7: 5

Number is between 1 and 3: 2

Number is between 4 and 7: 7

Number is between 4 and 7: 4

Number is greater than 7: 10

Number is greater than 7: 9

Number is between 4 and 7: 6

Output 16.2: Output of elseif.bas

This example program is a case where you must be careful not to overlap the
range values, otherwise you will get results you did not expect. Using the > and <
operators create a range that is 1 more than the second operand of > and 1 less than the
second operand of <. If you were to incorrectly overlap the 4 value for example, then the
ElseIf statement would execute for a value of 4, which is not the intention of the program.

The IIF Function

The Iif, or “immediate If” function returns one of two numeric values based on an
expression. You can think if the Iif function as an in-line If statement that acts as a
function call.

Value = Iif(<expression>, numeric_value_if_true, numeric_value_if_false)

Iif can be as a standalone function or inside other expressions where you do not
want to split the expression to insert an If statement. The numeric values can be literal
values, variables or numeric function calls. The limitation of the function is that it will only
return a numeric value, not a string value, however you can work around this limitation
by using pointers.

224

Unlike the Visual Basic version of this function, FreeBasic does evaluate both of the
return statements.

The following program shows the different ways to use the Iif function.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Option Explicit

#define False 0

#define True Not False

#define Null 0

Dim As Integer iresult, a, b, c, d

Dim As Zstring Ptr myZString

Function ResultTrue As Integer

 Print "<In function ResultTrue.>"

 Return True

End Function

Function ResultFalse As Integer

 Print "<In function ResultFalse.>"

 Return False

End Function

Function GetString As Zstring Ptr

 Dim As Zstring Ptr zp

 Print "<In function GetString.>"

 'Need to add 1 for the terminating Null character

 zp = Callocate(Len("Here is a string.") + 1)

 *zp = "Here is a string."

 Return zp

End Function

a = 5

b = 6

c = True

d = False

'Return literal values via the define

iresult = Iif(a > b, True, False)

Print "IIF with values:";iresult

'Return variable values

 225

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

iresult = Iif(a = b, c, d)

Print "IIF with variables:";iresult

'Return results from numeric function calls

iresult = Iif(a < b, ResultTrue, ResultFalse)

Print "IIF with functions:";iresult

'Return a pointer to a string

myZString = Iif(a < b, GetString, Null)

If myZString <> Null Then

 Print myZString[0]

 Deallocate myZString

End If

Sleep

End

Listing 16.3: iif.bas

Analysis: Lines 3 thorough 5 define the constant values that will be used in the
program. False is defined as 0, and True is defined as Not False which will evaluate to -1.
Null is defined as 0, which will be used as a check for the pointer variable declared later
in the program. Lines 7 and 8 create the working variables for the program. The iresult
variable is used as the return value for the Iif function, while the rest of the variables are
used as expression and return variables. The pointer variable myZString, is used as the
return value from the function GetString.

Lines 10 through 13 and 15 through 18 define two functions that will be used for
the True and False return values of the Iif function. Each function prints a string to the
screen to indicate that the function was called, and returns either True or False. Lines 20
through 28 define the GetString function that will allocate a memory segment (line 25),
initialze the memory segment to a string value (line 26), and return a pointer to this
memory segment (line 27). The function also prints a string to the screen in line 23 to
indicate that the function was called.

Lines 30 through 33 set the variables to their default values. Line 36 shows how to
return a literal value from the Iif function. Since the #define statement will replace the
True and False with the defined literal values, this works in the same manner as typing in
-1 and 0 into the Iif function. Line 40 shows the Iif function using variables as the return
values. Line 44 illustarates using Iif with function calls for the return values. Line 48
illustrates how to return a pointer to a string. Notice that Null is returned in the False part
of the Iif function; this is to prevent using a null pointer in the program, since you can
check the return value against the Null to be sure that the pointer was properly
initialized. Lines Lines 49 through 52 check to see if myZString contains a valid pointer
assignment and then prints the string value using the pointer index method in line 50.
Line 51 deallocates the memory segment, although in this instance it isn't really
necessary, as the memory segment will automatically be deallocated when the program
ends. However, it is a good reminder that if you were using this function within a
program, such as a loop, you would want to deallocate the memory segment when you
finished using it. Good memory management is a good habit that you cultivate.

226

When you run the program you should see the following output.

IIF with values: 0

IIF with variables: 0

<In function ResultTrue.>

IIF with functions:­1

<In function GetString.>

Here is a string.

Output 16.3: Output of iif.bas

As you can see from the example program, the Iif function has a lot of flexibility.
Being able to return a function value allows you to extend the functionality to strings and
composite types, which you cannot do with the basic format of the function.

The Select Case Statement Block

The Select Case block can be viewed as an optimized if ladder, and works in much
the same way. The standard Select Case can use any of the standard data types for
<expression> and the specialized Select Case As Const format is optimized for integer
values.

Select Case <expression>

Case <list>

<statement>

<statement>

...

Case Else

<statement>

<statement>

...

End Select

This code snippet shows the syntax of the standard select case. Expression is
usually a variable which can be of any of the standard data types, or individual elements
of a Type or array. The <list> clause of the Case statement can be any of the following
formats.

● Case <value>: Value is one of the supported data types or an enumeration.

● Case <value> To <value>: Specifies a range of values.

● Case Is <operator> <value>: Operator is any of the logical operators listed in
Table 17.1.

● Case <value>, <value>, ...: List of values separated with commas.

 227

● Case <variable>: A variable that contains a value.

Select Case As Const <integer_expression>

Case <list>

<statement>

<statement>

...

Case Else

<statement>

<statement>

...

End Select

The Select Case As Const is a faster version of the Select statement designed to
work with integer expressions in the range of 0 to 4097. The <list> statement formats for
the Select Case As Const are limited to values or enumerations of values. That is, the
operator expressions are not allowed within a Case As Const.

When a Case block is executed, the statements following the Case keyword up to
the next Case keyword (o End Select) will be executed. Only one block of statements
within a Case will execute at any one time. If a Case Else is present, then the statements
within the Else block will execute if no Case matches the <expression> portion of the
Select statement. The following program illustrates using the Select Case statement
block.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Option Explicit

'Ascii code of key press

Dim As Integer keycode

'Loop until esc key is pressed

Do

 keycode = Asc(Inkey)

 Select Case As Const keycode

 Case 48 To 57

 Print "You pressed a number key."

 Case 65 To 90

 Print "You pressed an upper case letter key."

 Case 97 To 122

 Print "You pressed a lower case key."

 End Select

 Sleep 1

Loop Until keycode = 27 '27 is the ascii code for Escape

End

Listing 16.4: selectcase.bas

228

Analysis: Line 4 declares an integer value that will be used to capture the ascii
codes in the Do-Loop block. Line 7 opens the Do-Loop block. Line 8 uses the Inkey and
Asc functions to return the ascii code of a key press. Lines 9 through 16 define the Select
Case As Const block. Line 9 uses the variable keycode as the expression for the select
case. Line 10 checks to see if the keycode variable is between 48 and 57 inclusive, and if
True will execute the code in line 11. Line 12 checks to see if the ascii code falls in the
upper case letter range and if True, will execute line 13. Line 14 checks the lower case
letter range and executes line 15 if True. Line 16 closes the Select Case block.

Sleep is used in line 17 to allow other process to run while this program is running.
Line 18 checks to see if the keycode variable contains 27, the ascii code for the Escape
key, and exits the loop if True. The program is then closed in the usual way.

When you run the program you should see something similar to the following.

You pressed an upper case letter key.

You pressed an upper case letter key.

You pressed a lower case key.

You pressed a lower case key.

You pressed a number key.

You pressed a number key.

Listing 16.5: Output of selectcase.bas

You wil notice that when the program runs, only one Case statement is executed at
any one time. If you have used C, then the Select Case is like the Switch statement, but
with implicit break statements within each Case block. Since only one Case block will
execute, you cannot have fall-through situations like you have in C.

 229

17 Appendix A: GNU Free Documentation License

 GNU Free Documentation License
 Version 1.2, November 2002

 Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
 51 Franklin St, Fifth Floor, Boston, MA 02110­1301 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world­wide, royalty­free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document", below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front­matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall subject
(or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical

230

connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,
as Front­Cover Texts or Back­Cover Texts, in the notice that says that
the Document is released under this License. A Front­Cover Text may
be at most 5 words, and a Back­Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine­readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard­conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine­generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

 231

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front­Cover Texts on the front cover, and Back­Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine­readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer­network location from which the general network­using
public has access to download using public­standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy

232

of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
 from that of the Document, and from those of previous versions
 (which should, if there were any, be listed in the History section
 of the Document). You may use the same title as a previous version
 if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities
 responsible for authorship of the modifications in the Modified
 Version, together with at least five of the principal authors of the
 Document (all of its principal authors, if it has fewer than five),
 unless they release you from this requirement.
C. State on the Title page the name of the publisher of the
 Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications
 adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice
 giving the public permission to use the Modified Version under the
 terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections
 and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add
 to it an item stating at least the title, year, new authors, and
 publisher of the Modified Version as given on the Title Page. If
 there is no section Entitled "History" in the Document, create one
 stating the title, year, authors, and publisher of the Document as
 given on its Title Page, then add an item describing the Modified
 Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for
 public access to a Transparent copy of the Document, and likewise
 the network locations given in the Document for previous versions
 it was based on. These may be placed in the "History" section.
 You may omit a network location for a work that was published at
 least four years before the Document itself, or if the original
 publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications",
 Preserve the Title of the section, and preserve in the section all
 the substance and tone of each of the contributor acknowledgements
 and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document,
 unaltered in their text and in their titles. Section numbers
 or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section
 may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements"
 or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front­matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties­­for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

 233

You may add a passage of up to five words as a Front­Cover Text, and a
passage of up to 25 words as a Back­Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front­Cover Text and one of Back­Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"
in the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements",
and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit.

234

When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such
parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

 235

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

 Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front­Cover Texts, and no Back­Cover Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

If you have Invariant Sections, Front­Cover Texts and Back­Cover Texts,
replace the "with...Texts." line with this:

 with the Invariant Sections being LIST THEIR TITLES, with the
 Front­Cover Texts being LIST, and with the Back­Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.

236

18 Appendix B: Setting Up FreeBasic Under Microsoft
Windows

The first step in programming in FreeBasic is to download the compiler package
and install it. You can skip this section if you already have FreeBasic installed on your
system.

You can find the current version at http://www.freebasic.net/. At the time of this
writing, the current stable version of FreeBasic is .17b. The instructions presented here
are for the current version. Later versions may have a different installation method so be
sure to read the included documentation before installing the package. Click on the
download link on the main page of the FreeBasic website and select the Windows stable
version. You will be presented with a list of download mirrors. Select the site closest to
you (which will download faster) and save the file to a known location of your hard drive.

The filename should be FreeBASIC-v0.17b-win32.exe, or something similar. Double
click this file to run the setup program. Click Next on the first screen, read through the
license on the second screen and click the Accept button. FreeBasic is licensed under
version 2 of the Gnu General Public License5. The third screen allows you select the files
that will be installed. For the purposes of the book, be sure to install all libraries by
clicking on the Libraries check box until you see a green check mark, as illustrated in
Figure 1.1.

5 See the Free Software Foundation’s GNU website http://www.gnu.org/copyleft/gpl.html for details of the GPL
license.

 237

http://www.freebasic.net/

You also want to make sure the examples are installed as well as the libraries,
since there is a wealth of information to be gleaned from the provided examples. Click
Next to select the location where you want to install the package and then click Next
again to select where you want to place the shortcuts on your system menu and then
click Install.

The setup program will install the files. This may take some time depending on the
speed of your computer. Once all the files have been installed click finish. If the Run
FreeBasic checkbox is checked, then a command window will open in the FreeBasic folder.

238

Figure 18.1: Library Installation

Installing FBIde

Unlike QuickBasic, FreeBasic does not have a built-in editor, so a third party editor
must be used to create programs. Any text-based editor can be used and there are many
free programmers’ editors available on the Internet. FBIde is an editor specifically
designed to be used with FreeBasic and is the editor used for all the programs in this
book. If you do not have FBIde already installed, then you must download the editor from
the FBIde website located at http://www.fbide.freebasic.net.

Click on the download link and select the FBIde installer download link. Select the
download mirror nearest to your location, for a faster download, and save the file to a
known location on your hard drive. At the time of this writing, the current version of FBIde
is 0.4.6 and the filename should FBIde_0.4.6.exe or something similar.

Double click the file to install the editor. Click Next on the first screen and make
sure the “I accept the agreement” radio button is checked and click Next. Select the
folder to install the editor. To make things easier, install FBIde in the folder where you
installed FreeBasic. Click the Next button. Select the menu shortcut location, and again
you should group the FBIde shortcut with the FreeBasic shortcut created earlier and click
Next. The next screen allows you to install desktop shortcuts and associate *.bas and *.bi
files with FBIde. If FreeBasic is the only basic compiler you are using, then it is convenient
to associate these files with FBIde. If FreeBasic isn’t the only basic compiler you have,
then you might not want to associate the files. Click the Next button and the final screen
will be displayed. Click the install button.

Once the files have been installed click the Finish button. If the Launch Application
check box is checked, FBIde will be started. The ide executable is called fbide.exe and
should be in the main install folder.

Setting Up FBIde

In order to create FreeBasic programs with FBIde, the ide will need to know the
location of the compiler. Start FBIde and select View->Settings from the main menu.
Select the FreeBasic tab and make sure the Compiler Path textbox is pointing to the
FreeBasic compiler, fbc.exe as illustrated in Figure 1.2.

 239

Figure 18.2: Setting the path to the FB compiler

Your setup will be different depending on where you installed FreeBasic, but should
look similar to the above example. Once the path is setup, you are ready to compile your
first program.

Compiling Your First Program

This is a good time to test the installation to make sure everything is set up
correctly. Start FBIde, if it isn’t already running, enter the following code into the editor
and save the code as helloworld.bas.

1

2

3

4

5

Option Explicit

Cls

Print "Hello World From FreeBasic!"

Sleep

End

Listing 18.1: helloworld.bas

Analysis: Line 1 is a compiler directive that tells the compiler each variable should
be declared with the Dim statement. This program doesn't contain any variables, but it is
a good habit to always use Option Explicit in your programs. The Cls statement in line 2
clears the console screen. The Print statement in line will print the string “Hello World
From FreeBasic” at the current cursor position. The Sleep statement in line 4 pauses the
program and waits for a key press. The End statement in line 5 ends the program.

FreeBasic is a true compiler, which means that the code must be converted to an
executable before you can run the program. Using FBIde however, the process is quite

240

transparent. After typing in the above code click on the green arrow on the toolbar,
circled in yellow in Figure 1.3.

Figure 18.3: Running a FreeBasic Program

If there are no errors in the program, clicking this button will compile and run the
program resulting in the output. This is an example of a console program which uses a
text mode window to display content. Most of the programs in this book are console
mode programs, with the exception of the graphics programs.

FreeBasic does not have a built-in GUI interface. It relies on third-party libraries such as
the Windows SDK, GTK or wxWidgets. This allows the programmer to pick the GUI
interface that best meets the needs of the program, and since many of the GUI libraries
are cross-platform, will allow GUI programs to run on several operating systems.

Hello World from FreeBasic!

Output 18.1: helloworld.bas

Press any key to exit the program. If you see the above screen, everything is set
up correctly and you are ready to begin writing FreeBasic programs. If you get an error
message, make sure that you have typed in the code exactly as listed, and that you have
entered the correct path to the compiler in the compiler settings.

Additional Resources

In addition to this book, there are several resources on the Internet that you can
use for any questions you may have on installing FreeBasic or on writing programs. You
can see the current list of resources at the support page of the FreeBasic website,
http://www.freebasic.net.. The FreeBasic community is a generous bunch and are willing
to help newcomers over the first hurtles of programming.

 241

Introduction to FBIde

FBIde is an Open Source ide for FreeBasic written by Albert Varaksin. At the time of
this writing, FBIde is at version 0.4.6. You should check the FBIde website,
http://fbide.freebasic.net/, to see if there are newer versions of the software. This
introduction is based on 0.4.6; so later versions may be different.

General Settings

The first task is to set up the FBIde environment. Select View -> Settings from the
main menu. You should see the General Settings tab displayed as in Figure 2.1.

Figure 18.4: General Settings Dialog

Make sure that your settings are the same as Figure 2.1 for the purposes of this
chapter and click the OK button. You can always change them later as you develop your
method of working.

The best way to understand how FBIde works is to look at an example program.
Start FBIde and type in the following program. Do not type in the line numbers as they
are only provided as reference. Don’t worry about the details of the program. This is just
an example to illustrate some of the features of FBIde.

1

2

3

4

5

Option Explicit

Declare Function GetHello() as String

Dim HelloString as String

'Clear the screen

Cls

242

6

7

8

9

10

11

12

13

14

15

16

17

'Get the hello string

HelloString = GetHello

'Print to console window

Print HelloString

'Wait for keypress

Sleep

'End program

End

'GetHello function

Function GetHello() as String

 Return "Hello World from FreeBasic!"

End Function

Listing 18.2: helloworld2.bas

Analysis: Once again the program is started with Option Explicit in line 1. The
Declare statement in line 2 tells the compiler that a function GetHello is somewhere in
the program. The declaration statement allows you to reference a function before the
compiler has compiled the code for the function. In line 3 a string variable has been
declared using the Dim statement. When the compiler sees the Dim statement, it will
allocate memory based on the data type. Line 4 is an example of a comment. A comment
starts with the ' (single quote) character and continues to the end of the line. The Cls
statement in line 5 will clear the console screen. In line 7 the string variable previously
declared is set the value of the function, GetHello which returns a string value. In line 9
the contents of the string variable are printed to the string. Line 11 through 13 pause the
program and wait for a key press.

The function GetHello that was declared in line 2 is defined in lines 15 through 17.
The keyword Function indicates that this procedure will return a value, using the Return
statement in line 16. Each function must be closed with the End Function keywords
shown in line 17.

You should frequently save your work while working on your programs. A lot of
unexpected things can happen, and if for some reason the computer shuts down or you
lose power, you can easily lose hours of work. Table 2.1 shows the File functions in FBIde.
The shortcut keys show the key combination required to invoke the functions. For
example, to invoke Undo you would hold down the Ctrl key while pressing the Z key. All
the short-cut keys work in the same fashion. Learning the short-cut keys will save
valuable time during the editing process.

Function Meaning Menu Short-cut Toolbar Icon

New File Creates a new
file and opens

a blank tab

File -> New Ctrl-N

Open File Displays open
file dialog and
loads new file
into a new tab

File -> Open Ctrl-O

 243

Function Meaning Menu Short-cut Toolbar Icon

Save File Saves current
file to disk. If

file is new, the
save dialog

will be
displayed

File -> Save Ctrl-S

Save File As Save current
file with a new

file name

File -> Save As Ctrl-Shift-S None

Save All Saves all open
files

File -> Save All None

Load Session Loads all files
saved as a

session

File -> Load
Session

None None

Save Session Saves all open
files as a
session

(similar to a
project)

File -> Save
Session

None None

Close Closes the
current open

file

File -> Close Ctrl-F4

Close All Closes all open
files

File -> Close All None None

New Window Opens a new
instance of

FBIde

File -> New
Window

Shift-Ctrl-N None

Quit Closes FBIde File -> Quit Ctrl-Q None

Table 18.1: File Functions

Most Recent Used Files List

The list of files under the Quit menu option is the MRU or most recently used file
list. Selecting a file from the list will load the file into the editor.

Syntax Highlighting

After typing in the program, FBIde should look similar to Figure 2.2.

244

Figure 18.5: FBIde with HelloWorld2.bas loaded

The first thing you will notice is that the keywords are highlighted in different
colors. This is a visual aid to help indicate the correct spelling of the keywords, data types
as well as to indicate data items. You can change the color scheme by selecting View ->
Settings from the main menu and selecting the Theme tab.

Themes

There are several predefined themes that you can select by clicking on the Theme
drop-down box as shown in Figure 2.3. You can also create your own theme by selecting
Create New Theme from Theme drop-down, selecting the language elements from the
Type list box, selecting the desired Foreground and Background colors for the selected
element, as well as the font characteristics for the language element. Click on the Save
Theme button to save the theme for later use.

 245

 Figure 18.6: Theme Settings

Keywords

In order to colorize the keywords, FBIde contains keyword group lists under the
Keywords tab of the settings dialog as shown in Figure 2.4.

246

Figure 18.7: Keyword Settings

FreeBasic is in continual development, and a new version of the compiler may
come out ahead of the FBIde updates. If new keywords are added to the language, you
can add them here so that they will be colorized in the editor.

Tabbed Interface

FBIde uses a tabbed interface so you can load more than one file at a time. For
large projects, it is a good idea to break up your program into different modules, and
each loaded module will have a tab and workspace of its own. The current active file will
be the highlighted tab.

Line Numbers

The numbers in the left margin are line numbers and are provided for reference. If
there is an error in your program and it won’t compile correctly, you will see an error
message and line number in the result window. FBIde will also position the cursor on the
offending line. Figure 2.5 shows the result window with an error displayed.

 247

Figure 18.8: Result window showing an error

Results Window

The result window indicates line number in the Line column, the current file in the
File column, the error number returned by the compiler in the Error Nr column, and the
corresponding error message in the Message column, along with the offending piece of
code. You will notice that the cursor has been placed on the correct line in the editor.

If you look at the bottom right panel in Figure 2.5 you will see a 7: 1. This indicates
that the cursor is currently on line 7 and column 1.

Subroutine and Function Folding

If you look at line 15 in Figure 2.5 you will see a small white box next to the line
number. This is the subroutine and function folding handle. Click on the box and the code
for the subroutine will collapse and clicking again on the box will display the code. If your
program has a number of subroutines or functions, this is a handy way to keep the
workspace a bit less cluttered.

Folding is based on the indentation of your program and not the keywords. If you
do not indent your program you will not see any folding handles.

248

Save File Indicator

Notice in Figure 2.5 that there is an asterisk next to the filename in the highlighted
tab. This indicates that the file has not yet been saved.

Quit Tab Select and Close Tab

If you have a lot of files open, you may not be able to fit all the tabs on the screen,
as illustrated in Figure 2.6.

Figure 18.9: Multiple files open

The small downward pointing arrow to the right of the tab list is the quick tab
select. Clicking on this arrow will display a list of loaded files. Selecting a file from the list
will make that tab active. Next to the down arrow are left and right arrows that will scroll
left and right through the tab list. The X will close the current file in the selected tab.

Editing and Format Functions

The editor supports all the standard editing and search functions under the Edit
and Search menu items. Table 2.2 shows all the editing and search functions.

Function Meaning Menu Short-cut Toolbar Icon

Undo Removes last
editing change

Edit -> Undo Ctrl-Z

Redo Restores last editing
change

Edit -> Redo Ctrl-Shift-Z

 249

Function Meaning Menu Short-cut Toolbar Icon

Cut Cuts selected
(highlighted) text to

clipboard

Edit -> Cut Ctrl-X

Copy Copies selected text
to clipboard

Edit -> Copy Ctrl-C

Paste Pastes text into
editor from
clipboard

Edit -> Paste Ctrl-V

Select All Selects all text in
editor

Edit -> Select
All

Ctrl-A None

Select Line Selects all text on
current line

Edit -> Select
Line

Ctrl-L None

Indent Increase Indents all selected
lines

Edit -> Indent
Increase

Tab None

Indent Reduce Removes last indent
for all selected lines

Edit -> Indent
Reduce

Shift-Tab None

Comment Block Adds comment
character (‘) to
selected lines

Edit ->
Comment

Block

Ctrl-M None

Uncomment
Block

Removes comment
character from
selected lines

Edit ->
Uncomment

Block

Ctrl-Shift-M None

Find Displays the find
dialog

Search -> Find Ctrl-F None

Find Next Continues last find
command

Search –> Find
Next

F3 None

Replace Displays the replace
dialog

Search ->
Replace

Ctrl-R None

Goto Line Displays the goto
line dialog

Search ->
Goto Line

Ctrl-G None

Table 18.2: Editing Functions

Block Comment-Uncomment

One nice feature of the ide the block comment, uncomment that you will find
under the Edit menu. Highlight one or more lines of code, select Edit -> Comment Block
to convert the code to comments. This will add the comment marker ‘ at the front of the
code. Select Edit -> Uncomment Block to remove the comments. This is very handy if you
want to add notes to the program, or comment out lines of code.

FBIde also has a built-in code formatter that you can find under View -> Format on
the main menu.

250

Figure 18.10: Auto-format options

As you can see there are a number of format options, including HTML and BBCode
that is used in many popular forums.

Bracket Matching

Another nice feature of FBIde is the Highlight Matching Braces setting in the
Settings dialog. Move the cursor to the left of a parenthesis, and the matching
parenthesis will be highlighted in the theme color, as illustrated in Figure 2.8.

Figure 18.11: Example of editor showing matching
parenthesis

This is very useful when working with complex expressions to make sure that all
the parentheses are balanced correctly.

 251

Subroutine and Function Browser

In large programs finding the correct subroutine or function can sometimes be
difficult, but FBIde has a function browser, which simplifies the task. The function browser
is shown in Figure 2.9.

Figure 18.12: Function browser

Press F2 to show or hide the browser. The browse tree is shown in Figure 2.8.
Selecting the S/F List tab, will display the function and subroutine names in a list format.
Double-clicking on a function name in the list will display the function in the editor. The
Browse Files tab displays an Explorer style file list to browse files on your hard drive.

As you can see in the Tree list, not only does the browser display subroutines and
functions, it will also list types, unions and enumerations, which will be covered later in
the book.

Running Programs and Creating Executables

The Run menu item has a number of options available for running and creating
executables. Table 2.3 explains the meaning of the various menu items.

Function Meaning Menu Short-cut Toolbar
Icon

Compile Creates an executable file
from the source.

Run -> Compile Ctrl-F9

252

Function Meaning Menu Short-cut Toolbar
Icon

Compile and
Run

Creates an executable
from source and then runs
the executable.

Run -> Compile
and Run

F9

Run Runs a previously created
executable.

Run -> Run Shift-Ctrl-
F9

Quick Run Creates a temporary
executable and then runs
that executable. The
temporary executable is
deleted after the program
exits.

Run -> Quick
Run

F5

CMD Prompt Displays a console window Run -> CMD
Prompt

F8 None

Parameters Displays parameter dialog Run ->
Parameters…

None None

Show Exit
Code

Displays program’s exit
code

Run -> Show
Exit Code

None None

Active Paths Sets working folder
current during compilation
and execution

Run -> Active
Paths

This is a checked
menu item.

When checked it
is active, when
cleared it is not

active.

None None

Open/Close
Output
Window

Displays or closes the
results window

None None

Table 18.3: Run Menu Items

Adding an Icon to Your Program

When you create an executable you will notice that the EXE file has the rather
bland, standard windows executable icon. You can add a custom icon to your application
by using a resource file. Create a new file in FBIde by selecting File -> New or clicking the
New icon on the toolbar. Enter the following line of text into the editor window.

FB_PROGRAM_ICON ICON hw.ico

Save the file as hw.rc in the same folder as HelloWorld2.bas and close the file. You
will need an icon file in the same folder as the rc file with the file name hw.ico. Load
HelloWorld2.bas if it isn’t already loaded. Select View -> Settings from the main menu
and select the FreeBasic tab on the settings dialog.

 253

Figure 18.13: Adding an rc File to the Compiler Commands

In the Compiler Command text field add hw.rc after the "<$fbc>" "<$file>" text
string and click the OK button. It should look similar to Figure 2.10. Now compile the
program and look in the program folder. The executable now has the custom icon you
selected rather than the standard windows icon.

Caution If you forget to remove the hw.rc after compiling your program, and
try to compile a different program in a different folder, you will see an error similar to
“Unable to open source file (hw.RC). OBJ file not made.” Just remove the resource file
reference from the compiler command text box in the settings dialog and the new
program will compile correctly.

FreeBasic Help File

You will notice in Figure 2.9 that there is a help file field. You can download a help
file for FreeBasic in CHM format from the downloads page of the FreeBasic website. This
is a snapshot of the FreeBasic documentation wiki located at the url:
http://www.freebasic.net/wiki/wikka.php?FBWiki. The help file may not be as current as
the wiki, but it is useful to have for working off line.

Copy the help file to the folder where you installed FreeBasic and point FBIde to
this file. Use the button to the left of the Help File text field to browse the location. Once
the help file has been set, selecting Help -> from the main menu will load display the
help file.

You can also get context-sensitive help for a keyword by placing the cursor on the
keyword and pressing F1.

254

19 Appendix D: Installing FreeBASIC under Linux

 255

	1 A Brief Introduction to FreeBASIC
	Differences from QuickBASIC
	Key Features of FreeBASIC

	2 Numeric Data Types
	Signed Versus Unsigned Data Types
	The Floating Point Data Type
	Pointer Data Types
	Numeric Variables
	The Dim Statement
	Shared Variables
	Static Variables
	Common Variables
	Extern and Import Variables
	Data Type Suffixes
	Changing The Default Data Type
	Using Different Number Formats
	Hexadecimal Numbers
	Binary Numbers
	Octal Numbers
	Exponential Numbers

	Which Data Type To Use?
	Option Explicit
	A Note about Option Explicit
	A Look Ahead
	Excercises

	3 Converting Numeric Data Types
	Implicit Data Conversion
	Explicit Data Conversion
	Numeric Data Conversion Functions
	Using Conversion Functions in Macros
	Decimal Rounding Functions

	A Look Ahead
	Exercises

	4 Introduction to the C Runtime Library
	The #Include Directive
	The Declaration Statement
	Runtime Conversion Functions
	The AddressOf Operator @
	Testing the Runtime Conversion Functions
	A Look Ahead
	Exercises

	5 Arithmetic Operators
	Arithmetic Operators
	Shortcut Arithmetic Operators
	Binary Number System
	The Sign Bit
	A Look Ahead

	6 Bitwise Operators
	The NOT Operator
	The AND Operator
	The OR Operator
	The XOR Operator
	The EQV Operator
	The IMP Operator
	Shortcut Bitwise Operators
	The SHL and SHR Operators
	Bitwise Macros
	A Look Ahead

	7 Mathematical Functions
	Trigonometric Functions	
	Absolute Value and the Sgn Function
	Logarithms
	The C Runtime Library Math Constants and Functions
	CRT Math Constants
	Selected CRT Math Functions

	A Look Ahead

	8 Pointer Data Type
	Pointers and Memory
	Typed and Untyped Pointers
	Pointer Operators
	Memory Functions
	Pointer Arithmetic and Pointer Indexing
	Pointer Functions
	Subroutine and Function Pointers
	Creating a Callback Function
	Pointer to Pointer
	A Look Ahead

	9 String Data Types
	Dynamic Strings
	Fixed Length Strings
	Zstrings
	Wstrings
	String Functions
	Len Versus Sizeof
	Using String Functions with Zstring Pointers
	The MK* and CV* String Functions
	Numeric String Conversion Functions
	Wide String Functions
	String Operators
	CRT Character and String Functions
	Character Functions
	Strtok Function

	A Look Ahead

	10 Composite Data Types
	Types
	Types Within Types
	Type Assignments
	Pointers to Types
	Type Memory Arrays
	Dynamic Arrays in Types
	Function Pointers in Types
	Forward References
	Bit Fields
	The Field Property

	Type Initialization
	Unions
	Types in Unions
	Unions in Types

	A Look Ahead

	11 Symbolic Constants
	#Define as a Constant
	The Const Keyword
	Const Versus #Define
	Enumerations
	A Look Ahead

	12 Arrays
	One-Dimensional Arrays
	One-Dimensional Array Indexes

	Two-Dimensional Arrays
	Two-Dimensional Array Indexes

	Multi-Dimensional Arrays
	Dynamic Arrays
	Array Functions
	Arrays of Types
	Arrays in Types
	Array Initialization
	Type Array Initialization
	CRT Array Functions
	Using the -exx Compiler Switch
	A Look Ahead

	13 Date and Time Functions
	Intrinsic Date and Time Functions
	Extended Date and Time Functions
	DateAdd Function
	DateDiff Function
	DatePart Function
	DateSerial Function
	DateValue Function
	Day Function
	Hour Function
	Minute Function
	Month Function
	MonthName Function
	Now Function
	Second Function
	TimeSerial Function
	TimeValue Function
	Year Function
	Weekday Function
	WeekDayName Function

	A Look Ahead

	14 The Format Function
	String Format Characters
	Numeric Format Characters
	Date Format Characters
	Time Format Characters
	A Look Ahead

	15 Console Programming
	The Console Screen
	The Console Functions
	Console Colors
	Positioning Text
	Printing Text
	Determining and Setting the Size of the Console
	Getting User Input
	Inkey
	Getkey
	Input
	Line Input
	Using the Mouse
	Creating a Text View Port
	A Look Ahead

	16Control Structures
	A Program is a State Machine
	The If Statement Block
	Using Bitwise Operators in an If Statement
	The Not Problem
	The Single-Line If Statement
	The If Code Block
	Nested If Statements
	The Else Statement
	The ElseIf Statement

	The IIF Function
	The Select Case Statement Block

	17 Appendix A: GNU Free Documentation License
	18 Appendix B: Setting Up FreeBasic Under Microsoft Windows
	Installing FBIde
	Setting Up FBIde
	Compiling Your First Program
	Additional Resources
	Introduction to FBIde
	General Settings
	Most Recent Used Files List
	Syntax Highlighting
	Themes
	Keywords
	Tabbed Interface
	Line Numbers
	Results Window
	Subroutine and Function Folding
	Save File Indicator
	Quit Tab Select and Close Tab
	Editing and Format Functions
	Block Comment-Uncomment
	Bracket Matching
	Subroutine and Function Browser
	Running Programs and Creating Executables
	Adding an Icon to Your Program
	FreeBasic Help File

	19 Appendix D: Installing FreeBASIC under Linux

